Showing posts with label FOSS. Show all posts
Showing posts with label FOSS. Show all posts

Feb 1, 2022

IEEE SSCS PICO Contestants Cross the Finish Line

by Boris Murmann
DOI:10.1109/MSSC.2021.3135176
Date of current version: 24 January 2022

Last summer 2021, the IEEE Solid-State Circuits Society (SSCS) launched its first open source chip design contest under the umbrella of its Platform for Integrated Circuit Design Outreach program (PICO). Beginning with 61 submissions, a volunteer jury selected 18 teams from nine countries to embark on a journey toward tapeout. Anyone interested in supporting future activities is encouraged to sign up at the Society’s volunteer web portal. Stay tuned for the 2022 edition of the SSCS PICO contest!
FIG: Layout views of the chips submitted for tape out

      TABLE: A Summary Oof Designs Submitted for TapeOut
FunctionTeamChip URL
15G bidirectional amplifierPakistan 3 (National University of Computer and Emerging Sciences)https://efabless.com/projects/560
2Wireless power transfer unitPakistan 2 (National University of Computer and Emerging Sciences)
3Variable precision fused multiply–add unitPakistan 1 (National University of Computer and Emerging Sciences)
4Oscillator-based LVDT readoutIndia 2 (Anna University)https://efabless.com/projects/474
5Temperature sensorIndia 1 (Anna University)
6GPS baseband engineIndia 3 (Anna University)
7Ultralow-power analog front end for bio signalsBrazil 2 (Universidade Federal de Santa Catarina)https://efabless.com/projects/476
8TIA for quantum photonics interfaceUSA 4 (University of Virginia)https://efabless.com/projects/470
9Bandgap referenceEgypt (Cairo University)https://efabless.com/projects/473
10Neural network for sleep apnea detectionUSA 2 (University of Missouri)
11Sonar processing unitChile (University of the Bío-Bío)https://efabless.com/projects/54

Oct 26, 2021

FOSS Tools Alternatives

Below is a (non-exhaustive) list of FOSS alternatives to various proprietary packages compiled by the Computer Center of Indian Institute of Technology Bombay

Aug 6, 2021

[paper] Compact device modeling and simulation with Qucs/Qucs-S/Xyce modular libraries

Mike Brinson and Felix Salfelder 
Compact device modeling and simulation with Qucs/Qucs-S/Xyce modular libraries 
In 28th MIXDES (2021), pp. 35-40 
DOI: 10.23919/MIXDES52406.2021.9497545 

Abstract—The rapid development of new semiconductor materials and devices has highlighted the need for compact modeling and circuit simulation tools that can be easily adapted to accommodate emerging technologies. In most instances device modeling tools employ non-linear behavioural sources and Verilog-A modules for model prototype construction. This paper is concerned with the properties and application of modular user defined/plugin library toolkit that combines the best features of behavioural source and Verilog-A modeling practice while encouraging user extensions. The toolkit has been implemented as a Qucs/Qucs-S/Xyce modular library that is loadable on demand. To demonstrate its capabilities and flexibility a series of compact device models are introduced and their simulated performance presented and evaluated.
Fig: A Qucs-S/Xyce test bench for simulating and displaying BJT Ic/V ce
output characteristics with 1µA ≤ Ib ≤ 10µA in 1µA steps.




Jul 8, 2021

[paper] eSim: An Open Source EDA Tool

Rahul Paknikar, Saurabh Bansode, Gloria Nandihal, Madhav P. Desai, Kannan M. Moudgalya, 
and Ashutosh Jha*
eSim: An Open Source EDA Tool for Mixed-Signal and Microcontroller Simulations
4th International Conference on Circuits, Systems and Simulation
(ICCSS), 2021, pp. 212-217,
DOI: 10.1109/ICCSS51193.2021.9464198.

Indian Institute of Technology Bombay, Mumbai, Maharashtra, India
* Vellore Institute of Technology Chennai, Tamil Nadu, India


Abstract: The ability to carry out simulations before making a PCB can save a lot of time, effort and cost. This work explains the creation of an open source mixed-signal simulation software eSim that will be of great help to students, hobbyists, the SME sector and startups. Analog and digital components are respectively modelled using SPICE and a hardware descriptive language in eSim. Inclusion of AVR based microcontroller as a part of the digital circuit is demonstrated through its instructions implemented as a C code library. This methodology could be used to provide support to other microcontroller families, such as PIC, STM and also more sophisticated controllers. These concepts are demonstrated through a few examples.
Fig: Workflow of NGHDL

Acknowledgment: The authors would like to thank Prof. Pramod Murali, Department of Electrical Engineering, IIT Bombay and Mrs. Usha Viswanathan, FOSSEE, IIT Bombay for their guidance. We would also like to express our gratitude towards Powai Labs Technology Private Limited for their gratis contribution to the VHPIDIRECT package and Utility package of NGHDL. The FOSSEE project is funded by the National Mission on Education through ICT, Ministry of Education, Govt. of India.





Feb 26, 2021

[DAY 2] 1st Asia/South Pacific MOS-AK Workshop

Arbeitskreis Modellierung von Systemen und Parameterextraktion
Modeling of Systems and Parameter Extraction Working Group
1st Asia/South Pacific MOS-AK Workshop
(virtual/online) FEB. 25-26, 2021

Day2: FEB.26
Session C Chair: Sadayuki Yoshitomi, Kioxia (J)

[8] eSim: An open source CAD software for circuit simulation
Kannan Moudgalya
IIT Bombay (IN)

[9] A modular approach to next generation Qucs
Felix Salfelder and Mike Brinson
QUCS Team; Centre for Communications Technology, London Metropolitan University (UK)

[12] Machine learning-based approach to model and analyze GaN power devices
Tian-Li Wu
National Yang Ming Chiao Tung University, Taiwan (TW)

[11] TCAD-inspired compact modeling approach
Sung-Min Hong and Kwang-Woon Lee
Gwangju GIST (KR)

Session D Chair: Sheikh Aamir Ahsan, NIT Srinagar (IN)
[10] An Innovative Technique for Ultrafast Carrier Dynamics and THz Conductivities of Semiconductor Nanomaterials
Praveen Kr. Saxena and Fanish Kr. Gupta
Tech Next Lab, Lucknow (IN)

[13] Compact Modeling of 3D NAND Flash Memory for Diverse Unconventional Analog Applications
Shubham Sahay
IIT Kanpur (IN)

[14] Steep Subthreshold Slope PN-Body Tied SOI-FET for Ultralow Power LSI, Sensor, and Neuromorphic Chip
Takayuki Mori and Jiro Ida
Kanazawa Institute of Technology, Nonoichi (J)

[Pic] Group photo of selected MOS-AK participants attending 2nd Day of the workshop


[DAY 1] 1st Asia/South Pacific MOS-AK Workshop

Arbeitskreis Modellierung von Systemen und Parameterextraktion
Modeling of Systems and Parameter Extraction Working Group
1st Asia/South Pacific MOS-AK Workshop
(virtual/online) FEB. 25-26, 2021

DAY 1: FEB. 25, 2021
Session A Chair: Usha Gogineni, ams AG, Hyderabad (IN)

[1] New Insights in Low Frequency Noise Characteristics in PE-BJTs
Peijian Zhang and Ma Long
Science and Technology on Analog Integrated Circuit Laboratory; WHU (CN), Keysight Technologies (US)

[2] Direct white noise characterization of short-channel MOSFETs
K. Ohmori and S. Amakawa
DeviceLab, Tsukuba (J)

[3] SPICE Modeling of 2D-material based FETs with Schottky-barrier contacts
Sheikh Aamir Ahsan
Nanoelectronics Research and Development Group, NIT Srinagar, Jammu and Kashmir (IN)


[4] Physics-based model of SiC MOSFETs including high voltage and current regions
Sourabh Khandelwal, Cristino Salcines, and Ingmar Kallfass
Macquarie University Sydney (AU), University of Stuttgart (D)

Session B Chair: Daniel Tomaszewski, IMiF, Warszaw (PL)
[5] Compact Modeling for Gate-All-Around FET Technology
Avirup Dasgupta
IIT Roorkee (IN)


[6] BSIM-HV: Advanced High Voltage MOSFET Compact Model
Harshit Agarwal
IIT Jodhpur (IN)

[7] ASCENT+ Transnational Access for the nanoelectronics
Georgios Fagas
Tyndall (IE)

[Pic] Group photo of selected MOS-AK participants attending 1st Day of the workshop

Feb 3, 2021

[paper] How to support open-source software and stay sane

How to support open-source software and stay sane
Anna Nowogrodzki
Nature 571, 133-134 (2019)
DOI: https://doi.org/10.1038/d41586-019-02046-0

Releasing lab-built open-source software often involves a mountain of unforeseen work for the developers.

It’s a familiar problem: open-source software is widely acknowledged as crucially important in science, yet it is funded non-sustainably. Support work is often handled ad hoc by overworked graduate students and postdocs, and can lead to burnout [read more...]


Jan 5, 2021

[paper] NESS Open-Source TCAD Environment

Cristina Medina-Bailon, Tapas Dutta, Fikru Adamu-Lema, Ali Rezaei, Daniel Nagy,
Vihar P. Georgiev, and Asen Asenov
Nano-Electronic Simulation Software (NESS): 
A Novel Open-Source TCAD Simulation Environment
Journal of Microelectronic Manufacturing
Vol 3 (4) : 20030407 2020
DOI:  10.33079/jomm.20030407

Abstract: This paper presents the latest status of the open source advanced TCAD simulator called Nano-Electronic Simulation Software (NESS) which is currently under development at the Device Modeling Group of the University of Glasgow. NESS is designed with the main aim to provide an open, flexible, and easy to use simulation environment where users are able not only to perform numerical simulations but also to develop and implement new simulation methods and models. Currently, NESS is organized into two main components: the structure generator and a collection of different numerical solvers; which are linked to supporting components such as an effective mass extractor and materials database. This paper gives a brief overview of each of the components by describing their main capabilities, structure, and theory behind each one of them. Moreover, to illustrate the capabilities of each component, here we have given examples considering various device structures, architectures, materials, etc. at multiple simulation conditions. We expect that NESS will prove to be a great tool for both conventional as well as exploratory device research programs and projects.
Fig: Randomly generated atomistic device considering random discrete dopants (RDD) and metal gate granularity (MGG) in the NESS simulation domain

Acknowledgments: This project was initiated by the European Union Horizon 2020 research and innovation programme under grant agreement No. 688101 SUPERAID7 and has received further funding from EPSRC UKRI Innovation Fellowship scheme under grant agreement No. EP/S001131/1 (QSEE), No. EP/P009972/1 (QUANTDEVMOD) and No. EP/S000259/1 (Variability PDK for design based research on FPGA/neuro computing); and from H2020-FETOPEN-2019 scheme under grant agreement No.862539-Electromed-FET OPEN. The coauthors would like to thank Dr. Carrillo-Nuñez, Dr. Lee, Dr. Berrada, Dr. Badami, and Dr. Duan for their former contribution to NESS; as well as Dr. Donetti for the possibility of using the 1DMC tool. 

Sep 7, 2020

[paper] Vertical Graphene–hBCN Heterostructure TFETs

A comparative computational study of tunneling transistors
based on vertical graphene–hBCN heterostructures
Mahsa Ebrahimi1, Ashkan Horri1, Majid Sanaeepur2, and Mohammad Bagher Tavakoli1
J. Appl. Phys. 127, 084504 (2020); DOI: 10.1063/1.5130777
Published Online: 28 February 2020

1Department of Electrical Engineering, Arak Branch, Islamic Azad University, Arak, Iran
2Department of Electrical Engineering, Faculty of Engineering, Arak, Iran

ABSTRACT In this paper, the electrical characteristics of tunneling transistors based on vertical graphene and a hexagonal boron-carbon-nitrogen (hBCN) heterostructure are studied and compared theoretically. We have considered three different types of hBCN, i.e., BC2N, BC2N0, and BC6N as a tunneling barrier. Our simulation is based on the nonequilibrium Green’s function formalism along with an atomistic tightbinding (TB) model. The TB parameters are obtained by fitting the band structure to first-principles results. By using this method, electrical characteristics of the device, such as the ION=IOFF ratio, subthreshold swing, and intrinsic gate-delay time, are investigated. For a fair comparison, the effects of geometrical variations and number of tunneling barrier layers on the electrical parameters of the device are simulated and investigated. We show that, by an appropriate design, the device can be used for low-power or high-performance applications. The device allows current modulation exceeding 106 at room temperature for a 0.6 V bias voltage.

FIG. DFT Band structure for (a) graphene - hBC2N0 - graphene (b) graphene - hBC2N - graphene and (c) graphene - hBC6N - graphene supercell. BC and BV represent barrier height in the conduction band and valence band, respectively, all simulated with QUANTUM ESPRESSO: A modular and opensource software for quantum simulations of materials

Jul 27, 2020

[FOSSi] OpenLANE: Open Source 130nm PDK

Join Mohamed Shalan for the 2nd talk in the Free and Open Source Silicon (FOSSi) Foundation Dial-Up series is on Tuesday 28th July, he will talk about OpenLANE on the first-in-the-industry Open Source Manufacturable SkyWater 130nm PDK

Mohamed Shalan - OpenROAD on SkyWater 130nm

Unlike the wider software world, Electronic Design Automation (EDA) open-source landscape has been fragmented for a long time, requiring significant effort and knowledge in a variety of disciplines to assemble a working ASIC flow. This has changed with projects such as Qflow and OpenROAD that aim at developing open-source toolchain for digital layout generation from RTL. OpenLane is an automated RTL to GDSII flow based on available opensource EDA tools configured/tuned for the SkyWater 130nm PDK. OpenLane main objective is to generate a clean layout from RTL designs in less than 24-hours with zero human interventions. OpenLane has been used, successfully, to tape-out a family of test chips (striVe).

Join live on YouTube on Tuesday July 28 at 16:00GMT https://lnkd.in/gCyMuPp

Jul 14, 2020

[RG] research paper reached 500 citations


FOSS EKV2.6 Verilog-A Compact MOSFET Model
Wladek Grabinski1, Marcelo Pavanello2, Michelly de Souza2, Daniel Tomaszewski3, Jola Malesinska3, Grzegorz Głuszko3, Matthias Bucher4, Nikolaos Makris4, Aristeidis Nikolaou4, Ahmed Abo-Elhadid5, Marek Mierzwinski6, Laurent Lemaitre7, Mike Brinson8, Christophe Lallement9, Jean-Michel Sallese10, Sadayuki Yoshitomi11, Paul Malisse12, Henri Oguey13, Stefan Cserveny13, Christian Enz10, François Krummenacher10 and Eric Vittoz10 
in 49th European Solid-State Device Research Conference 
(ESSDERC; pp. 190-193)

DOI: 10.1109/essderc.2019.8901822 

FOSS EKV2.6 Verilog-A at GitHub https://github.com/ekv26/model

1 MOS-AK Association (EU), 
2 Centro Universitario FEI, Sao Bernardo do Campo (BR), 
3 Institute of Electron Technology, Warsaw (PL), 
4 Technical University of Crete, Chania (GR), 
5 Mentor Graphics (USA), 
6 Keysight Technologies (USA), 
7 Lemaitre EDA Consulting, 
8 London Metropolitan University (UK), 
9 ICube, Strasbourg University (F), 
10 EPFL Lausanne, 
11 Toshiba (J), 
12 Europractice/IMEC (B), 
13 CSEM S.A., Neuchatel (CH)

Jun 2, 2020

Webinars by IEEE Photonics Society Student Chapter

The IEEE Photonics Society Student Chapter of Mangalam College of Engineering has organized a series of the webinars to take away some useful stuffs during current COVID-19 quarantine. The webinar #5 was on:
FOSS TCAD/EDA Tools for Semiconductor Device Modeling
Dr. Wladyslaw Grabinski  
MOS-AK Association   



May 11, 2020

Conference Paper Reached 500 Reads

Wladek 
Wladek Grabinski, Daniel Tomaszewski, Farzan Jazaeri, Anurag Mangla, Jean-Michel Sallese, Maria-Anna Chalkiadaki, Antonios Bazigos, and Matthias Bucher
FOSS EKV 2.6 Parameter Extractor
22nd International MIXDES Conference, pp. 181-186 (2015)

Abstract: The design of advanced integrated circuits (IC) in particular for low power analog and radio-frequency (RF) application becomes more complex as the device level modeling confronting challenges in micro- and nano-meter CMOS processes. As present CMOS technologies continue geometry scaling the designers can benefit using dedicated SPICE MOSFET models and apply specific analog design methodologies. The EKV was developed especially to meet altogether the analog/RF design requirements. This paper describes a basic set of the DC parameter extraction steps for the EKV 2.6 model. The free open source software (FOSS) Profile2D tool was used to illustrate an accurate EKV 2.6 DC extraction strategy. 


Apr 24, 2020

conference FOSS paper reached 300 reads


D. Tomaszewski, G. Głuszko, M. Brinson, V. Kuznetsov and W. Grabinski, "FOSS as an efficient tool for extraction of MOSFET compact model parameters," 2016 MIXDES - 23rd International Conference Mixed Design of Integrated Circuits and Systems, Lodz, 2016, pp. 68-73.

Abstract - A GNU Octave - based application for device-level compact model evaluation and parameter extraction has been developed. The applications main features are as follows: experimental I–V data importing, generating input data for different circuit simulation programs, running the simulation program to calculate I–V characteristics of the specified models, calculating model misfit and its sensitivity to selected parameter variation, and the comparison of experimental and simulated characteristics. Measured I–V data stored by different measurement systems are accepted. Circuit simulations may be done with Ngspice, Qucs and LTSpiceIV © . Selected aspects of the application are presented and discussed.

Oct 14, 2019

[Open Hardware] [CfP] Open Source Computer Aided Design and Modeling devroom at FOSDEM 2020

We are pleased to announce the CfP for

Open Source Computer Aided Design and Modeling devroom 
at FOSDEM 2020
1-2 February 2020, Brussel, Belgium.

The devroom will take place on Saturday, 1 February 2020, at [ULB (Campus Solbosch)](https://www.openstreetmap.org/node/1632534522), in Brussels, Belgium.

We hope you'll join us for a full day of talks, demos and interesting discussions on designing, modeling and testing hardware using Open Source tools. We welcome any talk proposals about the creation of physical objects. Topics of interest include, but are not limited to:

- Circuit Design
    * Printed circuit board design tools
    * Circuit simulation
- 3d modeling and analysis
    * Solid modeling tools
    * Meshing, modeling and transforming physical representations
    * Finite element analysis
- 3d printing
    * 3d slicing tools
    * Motor control
- Machine design and integration
    * Open Hardware projects
    * ECAD/MCAD integration
    * Thermal analysis
    * Wire modeling
- Physical Model Data storage
    * Data representation and optimization
    * Version control in hardware data storage
    * Collaborative and team-based hardware design techniques

Slots will be allocated for short (20 minutes) and long (40 minutes) talks. Speakers need to specify their preferred format. Both include time for questions and answers. Depending on the number of submissions, submitters may be asked to utilize an alternate time format.

The submission process
Please submit your proposals at
https://penta.fosdem.org/submission/FOSDEM20 before 20 November 2019.

If you already have a Pentabarf account (for example as a result of having submitted a proposal in the past), make sure you use it to log in and submit your proposal. Do not create a new account if you already have one.

Please include the following information with your submission:

  • Abstract
  • Preferred Session length
  • Speaker bio
  • Link to any hardware / code /slides for the talk

When you submit your proposal (creating an "Event" in Pentabarf), make sure you choose the "Open Source Computer Aided Design and Modeling" in the track drop-down menu. Otherwise your proposal may go unnoticed. Fill in at least a title and abstract for the proposed talk and a suggested duration. Keep in mind that much of the value in these meetings comes from the discussions, so please allot at least 20% of the talk time for questions and answers.

Important dates
- Call for papers available: 13 October 2019
- Call for participation closes: 20 November 2019
- Devroom schedule available: 15 December 2019
- Devroom day: Saturday 1 February 2020 (09:00 to 17:00)

Recordings
The talks will be recorded and live-streamed during FOSDEM20. The
recordings will be published under the same licence as all FOSDEM
content (CC-BY). Only presentations will be recorded, not informal
discussions and whatever happens during breaks between presentations.
By agreeing to present at FOSDEM, you give permission to be recorded.
Please contact us if you would like to request an exception to the
recording policy for your talk.

Mailing list
Feel free to subscribe to the [Open Source Computer Aided Design and
Modeling mailing list](https://lists.fosdem.org/listinfo/open-hardware-devroom)
to submit ideas, ask questions and generally discuss about the event.
_______________________________________________
open-hardware-devroom mailing list
open-hardware-devroom@lists.fosdem.org
https://lists.fosdem.org/listinfo/open-hardware-devroom

Feb 3, 2019

GnuCap and ngspice at 2019 FOSDEM DevRoom CAD and Open Hardware

Today at #FOSDEM: Felix Salfelder presenting "#Gnucap -- The GNU circuit analysis package Architecture, Algorithms and Applications" addressing Compact Model license considerations
"https://buff.ly/2CeG4DV"


Holger Vogt presenting "#ngspice, current status and future developments" pointing to an obstacle in FOSS CAD/EDA adoption: The newer and more complex Libs/PDKs often come along with encrypted model files.
"https://buff.ly/2DR0Fz6"


Oct 30, 2017

FOSDEM 2018 CAD and Open Hardware Devroom Call for Participation


This is the call for participation in the FOSDEM 2018 devroom on Computer Aided Design (CAD) tools and Open Hardware, to be held on Saturday 3 February 2018 in Brussels, Belgium. We are looking for contributions under the form of talks and tutorials covering the following main topics:
  • Printed Circuit Board (PCB) design tools (e.g. KiCad and gEDA)
  • Analogue and digital simulators (e.g. ngspice, Qucs, Gnucap, Xyce,GHDL, Icarus and Verilator)
  • Any other EDA tools such as high-level tools for digital hardware design (e.g. Migen) and HDL synthesis tools (e.g. Yosys)
  • Field solvers such as openEMS
  • Mechanical 2D and 3D CAD tools such as LibreCAD, FreeCAD, OpenSCAD andSolveSpace
  • Open Hardware projects such as the Teres laptop and the lowRISC SoC
  • Inter-project opportunities for collaboration
We hope to provide an opportunity for attendees to bring themselves up to date on the latest FOSS CAD and Open Hardware developments, share knowledge and identify opportunities to collaborate on development tasks. This devroom is an evolution of the EDA devroom we organised in 2015, 2016 and 2017.

The submission process: Please submit your proposals at

If you already have a Pentabarf account (for example as a result of having submitted a proposal in the past), make sure you use it to log in and submit your proposal. Do not create a new account if you already have one. Please provide a bit of information about yourself under Person -> Description -> Abstract. When you submit your proposal (creating an "Event" in Pentabarf), make sure you choose the "CAD and Open Hardware Devroom" in the track drop-down menu. Otherwise your proposal might go unnoticed. Fill in at least a title and abstract for the proposed talk and a suggested duration. Bear in mind that a lot of the value in these meetings comes from the discussions, so please be reasonable regarding the duration of the talk.

Important dates
  • 1 December 2017: deadline for submission of proposals
  • 8 December 2017: announcement of final schedule
  • 3 February 2018: devroom day
Recordings: The FOSDEM organisers hope to be able to live-stream and record all the talks. The recordings will be published under the same licence as all FOSDEM content (CC-BY). Only presentations will be recorded, not informal discussions and whatever happens during the lunch break. By agreeing to present at FOSDEM, you automatically give permission to be recorded. The organisers will agree to make exceptions but only for exceptional and well-reasoned cases.

Mailing list: Feel free to subscribe to the mailing list of the CAD and Open Hardware devroom to submit ideas, ask questions and generally discuss about the event:

Spread the word!

Aug 1, 2017

Circuit Design and Simulation Project using eSim

Invitation to participate in Circuit Design and Simulation Project using eSim

The FOSSEE (Free and Open Source Software for Education) project based at lIT Bombay has initiated a Circuit Design and Simulation Project using esim (an open source EDA tool for circuit design, simulation, analysis and PCB design).

Interested candidates can take any solved electronic circuit from any source and redesign it using eSim and submit it to us. Candidates will be rewarded with certificates and honorarium after a review process. These circuits will also be published on our website under an appropriate open source license. 

For more details, please visit: http://esim.fossee.in/circuit-simulation-project









Feb 7, 2017