Showing posts with label SOI. Show all posts
Showing posts with label SOI. Show all posts

Dec 21, 2017

[call for papers] EUROSOI-ULIS2018, Granada

Joint International EUROSOI-ULIS Conference on SOI and Ultimate Integration on Silicon
Granada, Spain
on March 19-21, 2018

3rd Call for Papers 
Abstract Submission Deadline: January 12, 2018

The organizing committee invites scientists and engineers working in the above fields to actively participate by submitting high quality papers. Original 2-page abstracts with illustrations will be accepted for review in pdf format. The template is available at the conference website: congresos.ugr.es/eurosoi-ulis2018. The accepted abstracts will be published in a Proceedings book with an ISBN. The authors of the accepted contributions will be requested to provide a 4-page paper to appear in the conference proceedings, which will be submitted to the IEEE Xplore® digital library. A selection of the presented manuscripts in the conference will be invited to submit an extended version, which after a peer-review process, will be published as a Special Issue of Solid-State Electronics. A best paper award will be attributed to the best paper by the SINANO institute.

Papers in the following areas are solicited:
• Advanced SOI materials and wafers. Physical mechanisms and innovative SOI-like devices.
• New channel materials for CMOS: strained Si, strained SOI, SiGe, GeOI, III-V and high mobility materials on insulator; carbon nanotubes; graphene and other two-dimensional materials.
• Properties of ultra-thin films and buried oxides, defects, interface quality. Thin gate dielectrics: high-κ materials for switches and memory.
• Nanometer scale devices: technology, characterization techniques and evaluation metrics for high performance, low power, low standby power, high frequency and memory applications.
• Alternative transistor architectures including FDSOI, DGSOI, FinFET, MuGFET, vertical MOSFET, Nanowires, FeFET and Tunnel FET, MEMS/NEMS, Beyond-CMOS nanoelectronic devices.
• New functionalities in silicon-compatible nanostructures and innovative devices representing the More than Moore domain, nanoelectronic sensors, biosensor devices, energy harvesting devices, RF devices, imagers, etc.
• CMOS scaling perspectives; device/circuit level performance evaluation; switches and memory scaling. Three-dimensional integration of devices and circuits, heterogeneous integration.
• Transport phenomena, compact modeling, device simulation, front- and back-end process simulation.
• Advanced test structures and characterization techniques, parameter extraction, reliability and variability assessment techniques for new materials and novel devices.
• Emerging memory devices

Invited Speakers:
• Prof. Jesús del Alamo (MIT, USA): III-V CMOS: Quo vadis?
• Prof. Hiroshi Iwai (TIT, Japan): 3D scaling of Si-IGBT.
• Prof. Enrique Calleja (Uni Madrid, Spain): MBE growth of ordered InGaN/GaN nano/microrods: basics and applications.
• Prof. Edward Yi Chang (NCTU, Taiwan): High performance GaN HEMT technologies.
• Prof. Adrian Ionescu (EPFL, Switzerland): Millivolt technology for low power digital and sensing applications.
• Dr. Byungil Kwak (SK Hynix, Korea): DRAM Peripheral Transistor Scaling using logic technologies – Future Challenges.

Jul 25, 2017

[paper] Compact On-Wafer Test Structures for Device RF Characterization

B. Kazemi Esfeh, K. Ben Ali and J. P. Raskin IEEE Fellow
Compact On-Wafer Test Structures for Device RF Characterization
in IEEE TED, vol. 64, no. 8, pp. 3101-3107, Aug. 2017
doi: 10.1109/TED.2017.2717196

Abstract: The main objective of this paper is to validate the radio frequency (RF) characterization procedure based on compact test structures compatible with 50um pitch RF probes. It is shown that by using these new test structures, the layout geometry and hence the on-chip space consumption for complete sets of passive and active devices, e.g., coplanar waveguide transmission lines and RF MOSFETs, is divided by a factor of two. The validity domain of these new compact test structures is demonstrated by comparing their measurement results with classical test structures compatible with 100–150um pitch RF probes. 50um -pitch de-embedding structures have been implemented on 0.18um RF silicon-on-insulator (SOI) technology. Cutoff frequencies and parasitic elements of the RF SOI transistors are extracted and the RF performance of trap-rich SOI substrates is analyzed under small- and large-signal conditions [read more...]



Feb 17, 2017

[call for papers] 2017 IEEE S3S Conference

S3S Conference 2017
Overview: This industry - wide event has gathered, for over 30 years, industry leaders and widely known experts, in a social - oriented environment. Our contributed papers and invited talks are focused on SOI Technology, Low - Voltage Devices/Circuits/Architectures, and 3D Integration. These 3 technologies will play a major role in tomorrow's industry as they enable application - tailored and Energy / Cost efficient circuit designs.
Important Dates
Paper Submission Deadline: May 22, 2017
Acceptance Notification: July 1, 2017

The conference at a glance
Monday to Wednesday, Oct. 16-18, 2017: Technical Sessions
Thursday, Oct.19: Fully - Depleted SOI Circuit Design; Full-day Tutorial
Tuesday, Oct.17: Monolithic 3D Half-day Tutorial

Scope: We welcome papers in the following areas:
Silicon On Insulator (SOI)
• Advanced Materials, Substrate and Processes
• Device Physics, Characterization and Modeling
• Device/Circuit Integration
• SOI Design, Circuits and Applications
• Non-Digital Devices and Applications (RF,
HV, Photonics, NEMS, MEMS, Analog...)
• New SOI Structures, Circuits and Applications
Low-Voltage Microelectronics
• Space-Based and Unattended Remote Sensors
• Biomedical Devices
• Low-Voltage Handheld/wireless systems
• Ultra-Low-Power Digital Computation
• Analog and RF Technologies
• Low Voltage Memory Technologies
• Energy Harvesting Techniques
• Asynchronous Circuits
• Novel Device and Fabrication Technology
3D Integration
• Low Thermal Budget Processing
• Fabrication Techniques and Bonding Methods
• Design and Test Methodologies
• Processes for Multi Wafer Stacking
• 3D IC EDA and Design Technology
• Heterogeneous Structures
• 3D Manufacturing and Logistics
• Reliability of 3D Circuits
• Fault Tolerant 3D Designs

Paper Submission:
Prospective authors should prepare a 2page abstract (follow online guidelines).
Acceptance is based on paper’s technical quality and relevance.

Conference manager contact Joyce Lloyd
6930 De Celis Pl., #36
Van Nuys, CA 91406
Tel: +1 818 795 3768
Fax: +1 818 855 8392

Jan 16, 2017

[paper] Radiation-Induced Fault Simulation of SOI/SOS CMOS LSI’s Using Universal Rad-SPICE MOSFET Model

Radiation-Induced Fault Simulation of SOI/SOS CMOS LSI’s 
Using Universal Rad-SPICE MOSFET Model
Konstantin O. Petrosyants, Lev M. Sambursky, Igor A. Kharitonov, Boris G. Lvov
J Electron Test (2017)
doi:10.1007/s10836-016-5635-8

Abstract: The methodology of modeling and simulation of environmentally induced faults in radiation hardened SOI/SOS CMOS IC’s is presented. It is realized at three levels: CMOS devices – typical analog or digital circuit fragments – complete IC’s. For this purpose, a universal compact SOI/SOS MOSFET model for SPICE simulation software with account for TID, dose rate and single event effects is developed. The model parameters extraction procedure is described in great depth taking into consideration radiation effects and peculiarities of novel radiation-hardened (RH) SOI/SOS MOS structures. Examples of radiation-induced fault simulation in analog and digital SOI/SOS CMOS LSI’s are presented for different types of radiation influence. The simulation results show the difference with experimental data not larger than 10–20% for all types of radiation.
The electrical schematics of SOS CMOS opamp and 4-bit counter are presented; two variants of either macromodel were used for body-tied partially-depleted transistors: a) core EKV-SOI/ BSIMSOI model; b) EKV-RAD/ BSIMSOI-RAD macromodel. [read more...]

Jul 20, 2016

Leti-UTSOI Compact Model

The Leti-UTSOI compact model is the only one to be totally dedicated to the FDSOI technology. In its recent version, the Leti-UTSOI model has reached its maturity. In collaboration with STM, its robustness was validated by successfully complying with the full test suite recommended by the CMC. The Leti-UTSOI model is now currently used at STM in the IC design division. It is now available in an industrial design-kit. The documentation and some model cards (typical) are available below:
The Leti-UTSOI Verilog-A code can also be obtained contacting LETI UTSOI Developers.


Leti-UTSOI Compact Model

The Leti-UTSOI compact model is the only one to be totally dedicated to the FDSOI technology. In its recent version, the Leti-UTSOI model has reached its maturity. In collaboration with STM, its robustness was validated by successfully complying with the full test suite recommended by the CMC. The Leti-UTSOI model is now currently used at STM in the IC design division. It is now available in an industrial design-kit. The documentation and some model cards (typical) are available below:
The Leti-UTSOI Verilog-A code can also be obtained contacting LETI UTSOI Developers.


Jan 18, 2014

[Final Program] EUROSOI 2014, Tarragona, Catalonia, Spain; January 27-29, 2014

The 10th Workshop of the Thematic Network
on Silicon on Insulator Technology, Devices and Circuits 
(EUROSOI 2014
Tarragona, Catalonia, Spain 
January 27-29, 2014 

The EUROSOI Workshop is an international forum to promote interaction and exchangesbetween research groups and industrial partners involved in SOI activities all over the world. Following the lively experience of the previous meetings in Granada (2005), Grenoble (2006), Leuven (2007), Cork (2008), Gšteborg (2009), Grenoble (2010), Granada (2011), Montpellier (2012), Paris (2013), EUROSOI 2014 will be held in Tarragona, Catalonia, Spain, and will include a short course program, oral and poster sessions, outstanding key-note presentations, as well as ample rooms for informal discussions. EUROSOI covers recent progress in SOI technologies and will be of interest to materials and device scientists, as well as to process, circuits and applications oriented engineers.

Monday, January 27, 2014

8:30 REGISTRATION
9:05-9:20 SHORT COURSE OPENING
9:20-11:00 PART 1 - EDS MINI-COLLOQUIUM ON SOI TECHNOLOGY 
9:20-10:10 "Process Challenges for Advanced Ge CMOS Technologies" Cor Claeys (IMEC, Leuven, Belgium)
10:10-11.00 "From Floating-Body Memory to Unified Memory on SOI" Sorin Cristoloveanu (INPG, Grenoble, France)
11:00-11:30 COFFEE BREAK
11:30-12:20 "Fabrication Challenges for sub-10 nm Technology nodes" Michael Ostling (KTH, Stockholm, Sweden)
12:20-13:00 "ESD protection of FD and MuG SOI CMOS Chips" Dimitris Ioannou (George Mason University, Fairfax, VA, USA)
13:00-14:30 LUNCH
14:30-15:50 Part 2 -EUROSOI TUTORIAL 
14:30-15:20 "Advanced SOI MOSFET architectures" Jason Woo (UCLA, CA, USA)
15:20-16:00 "SOI CMOS sensors, transistors and circuits for ultra-low-power and harsh environment applications" Denis Flandre (UCL, Louvain-la-Neuve, Belgium)
16:00-16:30 COFFEE BREAK
16:30-18:00 SOI MOSFET CHARACTERIZATION 
16:30-17:20 "On the threshold voltage and interface coupling in advanced SOI MOSFETs" Tamara Rudenko (ISP, Kyiv, Ukraine)
17:20-18:00 "From SOI MOSFET to Spin MOSFET: a modeling approach" Viktor Sverdlov (Tu-Wien, Austria)
20:30 EUROSOI RECEPTION

Tuesday January 28, 2014 

8:15 REGISTRATION
8:45-9:00 OPENING
9:00-11:00 PLENARY SESSIONS 
9:00-9:40 "Taking the next step on advanced HKMG SOI technologies -from 32 nm PD SOIvolume production to 20/28 FD SOI and beyond" Manfred Horstmann (Globalfoundries, Dresden, Germany) invited talk
9:40-10:20 INVITED TALK 
Heike Riel (IBM Research, Zurich) -invited talk
10:20-11:00 "Beyond Si CMOS: Benefits and Challenges " Rafael Rios (Intel, Portland OR, USA) -invited talk
11:00-11:20 COFFEE BREAK
11:20-13:00 SOI MATERIALS TECHNOLOGY AND CHARACTERIZATION 
11:20-11:40 Process and performance of Copper TSVs Lado Filipovic et al.
11:40-12:00 Increasing mobility and spin lifetime with shear strain in thin silicon films Dmitri Osintsev et al.
12:00-12:20 A Comparative Study of Variability of RTN Power Spectral Densities in Bulk and SOIMOSFETs  Louis Gerrer et al.
12:20-12:40 Low temperature noise spectroscopy of p-channel SOI FinFETs Bogdan Cretu et al.
12:40-13:00 Channel Length Influence on the Low-Frequency Noise of Strained 45o Rotated Triple Gate SOI nFinFETs Marcio Alves Sodre de Souza et al.
13:20-14:10 LUNCH
14:10-15:50 SOI MOSFET TECHNOLOGY 
14:10-14:30 Impact of S/D doping profile into electrical properties in nanoscaled UTB2SOI  devices Carlos Sampdero et al.
14:30-14:50 TCAD investigation on a formal Neuron device in 28nm UTBB FDSOI technology Philippe Galy et al.
14:50-15-10 Dual ground plane for high-voltage MOSFET in UTBB FDSOI Technology Antoine Litty et al.
15:10-15:30 Trigate NanoWire MOSFETs Analog Figures of Merit Kilchytska, Valeriya et al.
15:30-15:50 Electrostatically-doped SL FET optimized to meet all the ITRS power targetsat V_DD=0.4 V Elena Gnani et al.
15:50-16:00 COFFEE BREAK
16:00-17:20 SOI MOSFET CHARACTERIZATION 
16:00-16:20 Enhanced Dynamic Threshold Voltage UTBB SOI nMOSFETs Katia Sasaki et al.
16:20-16:40 Parasitic bipolar effect in advanced FD SOI MOSFETs: experimental evidence andgain extraction Fanyu Liu et al.
16:40-17:00 Impact of Lateral Fin-Width Non-Uniformity of FinFETs Clarissa Prawoto et al.
17:00-17:20 Surface effects on split C-V measurements on SOI wafers Luca Pirro et al.
17:20-17:40 Impact of Self-Heating on UTB MOSFET ParametersS ergej Makovejev at al.
17:40-18:00 POSTER BRIEFING (3 MIN EACH) 
18:00-19:40 POSTER SESSION 
Subthreshold Behavior of the PD SOI NMOS Device Considering BJT and DIBL Effects James Kuo et al.
Investigation of Statistical Effects on Reliability of SOI FinFETs Including Sidewall Crystal Orientation Salvatore Amoroso et al.
Powering the More than Moore Electronics with i-MOSLining Zhang et al.
Analysis of Short-Channel Effect in SOTB-MOSFET for Ultra-Low Power Applications Hidenori Miyamoto et al.
2D Analytical Modeling of the Trap-Assisted-Tunneling Current in Double-GateTunnel-FETs Michael Graef et al.
Improved Compact Current Model for FinFETs Based in a New Geometric Approach Arianne Pereira et al.
Capability of the IDS Analytical Model on Predicting the Diamond Variability by Usingthe F-Test Statistic Evaluation Salvador Gimenez et al.
An appraise of the sources of electrical parameters variation in DGMOS Rodrigo Picos et al.
An analytical model for the inversion charge distribution in GAA MOSFETs with rounded corners Francisco Ruiz et al.
The Negative World-line Holding Bias Effect on the Retention Time in FBRAMs Sara Santos et al.
20:30 GALA DINNER

Wednesday January 29, 2014 

8:30-10:30 SOI MOSFET MODELLING 
8:30-8:50 Comprehensive Low-Field Mobility Modeling in Nano-Scaled SOI Channels Zlatan Stanojevic et al.
8:50-9:10 A comprehensive DC current model to describe FinFET self-heating effects Benito Gonz‡lez et al.
9:10-9:30 Channel-Length Impact on Supercoupling Effect in FD-MOSFETs Carlos Navarro et al.
9:30-9:50 Substrate Effect on Threshold Voltage of long and short channel UTBB SOI nMOSFETs Joao Martino et al.
9:50-10:10 In depth characterization of electron transport in 14nm FD-SOI nMOS devices Minju Shin et al.
10:10-10:30 Role of the gate in ballistic nanowire SOI MOSFET Anurag Mangla et al.
10:30-10:50 COFFEE BREAK
10:50-13:10 CIRCUITS, MEMORIES AND SENSORS 
10:50-11:30 "Future of Multi-gate CMOS Technology" Hiroshi Iwai (University of Tokyo, Japan)
11:30-11:50 Impact of SEU on Bulk and FDSOI CMOS SRAM Walter Enrique Calienes Bartra et al.
11:50-12:10 Mechanical Characterization and Modelling of Lorentz Force Based MEMS Magnetic Field Sensors Petros Gkotsis et al.
12:10-12:30 Performance of Source-Follower Buffers Implemented with Junctionless Nanowire nMOS Transistors Michelly Souza et al.
12:30-12.50 PMOSFET-based Pressure Sensors in FD SOI Technology Benoit Olbrechts et al.
12:50-13:10 Performance of Common-Source current mirrors with asymmetric self-cascode SOInMOSFETs  Rafael Assalti et al.
13:10-14:20 LUNCH
14:20-16:10 BEYOND CMOS: NANOWIRES AND JUNCTIONLESS TRANSISTORS 
14:20-15:00 "2D semiconductor channels for ultimate thickness scaling and other versatile applications" Athanasios Dimoulas (IMS, Demokritos, Athens, Greece)
15:00-15:20 A way to solve Poisson equation en cylindrical coordinates to obtain a compact model for Junctionless Gate All Around MOSFET Franois Lime et al.
15:20-15:40 Explicit analytical charge and capacitance models for Junctionless Surrounding GateTransistors  Oana Moldovan et al.
15:40-16:00 Performance Evaluation of Stacked Gate-All-Around MOSFETs Meng-Hsueh Chiang et al.
16:00-16:20 Modeling of Quantization Effects in Nanoscale DG Junctionless MOSFETs Thomas Holtij et al.
16:20-16:30 COFFEE BREAK
16:30-16:50 BEYOND CMOS (TFETs) 
16:30-16:50 Heterojunction TFET inverters providing better performance than multi-gate CMOS at sub 0.3V Vdd Elena Gnani et al.
16:50-17:10 Transport mechanism influence on Vertical Nanowire-TFET analog performance as a function of temperature Paula Agopian et al.
17:10-17:30 3D Modeling of Direct Band-to-Band Tunneling in Nanowire TFETs. Lidija Filipovic et al.
17:30-17:50 Influence of the gate oxide thickness on the Analog Performance of vertical Nanowire-Tunnel FETs with Ge Source Felipe Neves et al.
17:50-18:10 Influence of a precisely positioned channel dopant on the performance of gate-allaround Si nanowire transistor: a full 3D NEGF simulation study Vihar Georgiev et al.
18:10-18:20 CONCLUSIONS AND ANNOUNCEMENTS 



Apr 24, 2013

TED Call for Papers on Compact Modeling of Emerging Devices

Compact Models (CMs) for circuit simulation have been at the heart of CAD tools for circuit design for almost five decades. As the mainstream CMOS technology is scaled into the nanometer regime, development of a truly physical and predictive CM for circuit simulation that covers geometry, bias, temperature, DC, AC, RF, and noise characteristics becomes a major challenge. The last call for a special issue on “advanced compact models and 45-nm modeling challenges” was in 2005. Seven years have passed, new technology nodes have been implemented, compact models have evolved and new compact models as well as compact models for new devices are being developed. Therefore, there is a need for another special issue dedicated to the advancement and challenges in core field-effect transistor (FET) models for 32-nm technologies and beyond as well as emerging technologies. For the core FET models, the associated noise/mismatch and reliability/variability models as well as proximity effects have become an essential part of the modeling effort. High-frequency, high-voltage, high-power, high-temperature devices have been extensively investigated, and their CMs are being reported in the literature. Device/circuit interaction and layout-dependent proximity effects are also hot topics today that are essential in nanometer chip designs. It is timely to report advances in these CMs in the 32-nm/22-nm technology era.

Concurrently, nonclassical MOSFETs as well as their CMs, such as multigate FinFETs and nanowire FETs, partially/fully-depleted ultrathin body (UTB) SOT, and thin-film transistors (TFTs), have emerged over the past decades. With the announcement of FinFETs being used in 22-nm and sub-22nm technology nodes, the need for such core models for fabless designers becomes an urgent reality. In these nonclassical devices, transistors are essentially short-channel, narrow-width, and thin-body. Tt is also an interesting topic to discuss and debate on the two different formalisms “top-down” drift-diffusion formulation adding ballistic effects versus “bottom-up” quasi-ballistic formulation adding scattering effects for modeling the real devices that are somewhere in between. Heterogeneous integration of various devices into the CMOS platform also becomes an important trend.
In addition, it is also timely to report advances in CMs of emerging devices beyond traditional silicon CMOS, such as different materials (III-V/Ge channel, organic) and different source/drain injection mechanisms (Schottky-barrier, tunneling, and junctionless FETs). These emerging device options for future VLSI building blocks have been studied extensively, while good physical CMs are still lacking. The special issue in these topics will stimulate research and development to promote modeling efforts such that theory would lead and guide technology realization and selection for future generations.
The special issue for the TRANSACTIONS ON ELECTRON DEVICES on compact modeling of emerging devices is devoted to the review and report of advancements in CMs for 32-nm technologies and beyond, including bulk and nonclassical CMOS and their associated noise/mismatch and reliability/variability models, as well as various emerging devices as future generation device options. It is timely as the industry is in the transition from traditional planar bulk-CMOS towards vertical FinFET technologies, and exploration of heterogeneous integration with various materials and structural choices.


Please submit manuscripts by using the following URL: http://mc.manuscriptcentral.com/ted
MAKE SURE TO MENTION THE SPECIAL ISSUE IN THE COVER LETTER

Paper submission Deadline: June 30, 2013
Scheduled Publication Date: February 2014

Guest Editors:
Xing Zhou, Nanyang Technological University, 
Jamal Deen, McMaster University, 
Benjamin Iniguez, Universitat Rovira i Virgili, 
Christian Enz, Swiss Federal Institute of Technology, 
Rafael Rios, Intel Corp.

If you have any questions about submitting a manuscript, please contact:
IEEE EDS Publications Office
445 Hoes Lane Piscataway JN 08854
Phone: +1 732 562 6855

Digital Object Identifier 10.1109/TED.2013.2253418

Mar 21, 2009

SOI Technology Goes Mainstream

SOI Technology Goes Mainstream
The unique characteristics of silicon on insulator are opening the door to new applications and the infrastructure needed to boost and support expanding markets.
Ruth DeJule, Contributing Editor -- Semiconductor International, 3/1/2009