Showing posts with label Schottky-barrier. Show all posts
Showing posts with label Schottky-barrier. Show all posts

Nov 2, 2020

[paper] SPICE Compact Model for Schottky-Barrier FETs

Sheikh Aamir Ahsan, Member, IEEE, Shivendra Kumar Singh, Chandan Yadav, Member, IEEE, Enrique G. Marín, Member, IEEE, Alexander Kloes, Senior Member, IEEE
and Mike Schwarz, Senior Member, IEEE
A Comprehensive Physics-Based Current–Voltage SPICE Compact Model 
for 2-D-Material-Based Top-Contact Bottom-Gated Schottky-Barrier FETs
IEEE Transactions on Electron Devices, vol. 67, no. 11, pp. 5188-5195, Nov. 2020
DOI: 10.1109/TED.2020.3020900

Abstract: In this article, we report the development of a novel physics-based analytical model for explaining the current–voltage relationship in Schottky barrier (SB) 2D material field effect transistors (FETs). The model has at its core the calculation of the surface-potential (SP) which is accomplished by invoking 2-D density of states in conjunction with Fermi–Dirac (FD) distribution for electron and hole statistics. The explicit computation for the SP, carried out using the Lambert-W function together with Halley’s method, is used to construct the SP-based band-diagram for realizing the transparency of the SBs. Thereafter, the ambipolar current is derived in terms of the electron and hole injection phenomena the thermionic emission and Fowler–Nordheim tunneling mechanisms at the SB contacts. Furthermore, drift-diffusion current is derived in terms of the SP and incorporated in the model to account for the scattering in the intrinsic 2D channel. Finally, the Verilog-A model is validated against experimental IV data reported in the literature for two different 2D material systems. This is the first demonstration of an explicit SP-based SPICE model for ambipolar SB-2-D-FETs that is simultaneously built on tunneling-emission and driftdiffusion formalisms.

Fig: (a) Band-diagram sketched along positive y-direction underneath the source electrode. Blue and black lines represent bands before and after applying Vgs. (b) ψ-based diagram sketched along positive x, constructed after calculating ψs and ψd. The geometrical screening length λ is given by λ ≈ (tox t2D)^1/2.

Acknowledgement: This work was supported in part by the National Project Implementation Unit (NPIU) through the third phase of Technical Education Quality Improvement Programme (TEQIP-III) Project and in part by DST-SERB Startup Research Grant under Award SRG/2019/001122.




Apr 24, 2013

TED Call for Papers on Compact Modeling of Emerging Devices

Compact Models (CMs) for circuit simulation have been at the heart of CAD tools for circuit design for almost five decades. As the mainstream CMOS technology is scaled into the nanometer regime, development of a truly physical and predictive CM for circuit simulation that covers geometry, bias, temperature, DC, AC, RF, and noise characteristics becomes a major challenge. The last call for a special issue on “advanced compact models and 45-nm modeling challenges” was in 2005. Seven years have passed, new technology nodes have been implemented, compact models have evolved and new compact models as well as compact models for new devices are being developed. Therefore, there is a need for another special issue dedicated to the advancement and challenges in core field-effect transistor (FET) models for 32-nm technologies and beyond as well as emerging technologies. For the core FET models, the associated noise/mismatch and reliability/variability models as well as proximity effects have become an essential part of the modeling effort. High-frequency, high-voltage, high-power, high-temperature devices have been extensively investigated, and their CMs are being reported in the literature. Device/circuit interaction and layout-dependent proximity effects are also hot topics today that are essential in nanometer chip designs. It is timely to report advances in these CMs in the 32-nm/22-nm technology era.

Concurrently, nonclassical MOSFETs as well as their CMs, such as multigate FinFETs and nanowire FETs, partially/fully-depleted ultrathin body (UTB) SOT, and thin-film transistors (TFTs), have emerged over the past decades. With the announcement of FinFETs being used in 22-nm and sub-22nm technology nodes, the need for such core models for fabless designers becomes an urgent reality. In these nonclassical devices, transistors are essentially short-channel, narrow-width, and thin-body. Tt is also an interesting topic to discuss and debate on the two different formalisms “top-down” drift-diffusion formulation adding ballistic effects versus “bottom-up” quasi-ballistic formulation adding scattering effects for modeling the real devices that are somewhere in between. Heterogeneous integration of various devices into the CMOS platform also becomes an important trend.
In addition, it is also timely to report advances in CMs of emerging devices beyond traditional silicon CMOS, such as different materials (III-V/Ge channel, organic) and different source/drain injection mechanisms (Schottky-barrier, tunneling, and junctionless FETs). These emerging device options for future VLSI building blocks have been studied extensively, while good physical CMs are still lacking. The special issue in these topics will stimulate research and development to promote modeling efforts such that theory would lead and guide technology realization and selection for future generations.
The special issue for the TRANSACTIONS ON ELECTRON DEVICES on compact modeling of emerging devices is devoted to the review and report of advancements in CMs for 32-nm technologies and beyond, including bulk and nonclassical CMOS and their associated noise/mismatch and reliability/variability models, as well as various emerging devices as future generation device options. It is timely as the industry is in the transition from traditional planar bulk-CMOS towards vertical FinFET technologies, and exploration of heterogeneous integration with various materials and structural choices.


Please submit manuscripts by using the following URL: http://mc.manuscriptcentral.com/ted
MAKE SURE TO MENTION THE SPECIAL ISSUE IN THE COVER LETTER

Paper submission Deadline: June 30, 2013
Scheduled Publication Date: February 2014

Guest Editors:
Xing Zhou, Nanyang Technological University, 
Jamal Deen, McMaster University, 
Benjamin Iniguez, Universitat Rovira i Virgili, 
Christian Enz, Swiss Federal Institute of Technology, 
Rafael Rios, Intel Corp.

If you have any questions about submitting a manuscript, please contact:
IEEE EDS Publications Office
445 Hoes Lane Piscataway JN 08854
Phone: +1 732 562 6855

Digital Object Identifier 10.1109/TED.2013.2253418