Showing posts with label Charge-based. Show all posts
Showing posts with label Charge-based. Show all posts

Feb 2, 2022

[paper] Modeling of SIC VDMOS FET

Anirban Kar∗, Ahtisham Pampori∗, Noriyoshi Hashimoto† and Yogesh Singh Chauhan∗
A Charge-Based Silicon Carbide MOSFET Compact Model for Power Electronics Applications
2021 IEEE 8th Uttar Pradesh Section UPCON)
DOI: 10.1109/UPCON52273.2021.9667643

∗Department of Electrical Engineering, IIT Kanpur (IN)
†Keysight Technologies (J)

Abstract: This paper presents a charge-based compact model for Silicon Carbide (SiC) power MOSFETs, which captures the static characteristics of the device over a wide range of voltages and currents. The drift region resistance and charges in the channel have been formulated to calculate the drain current in a self-consistent manner. The proposed model has been validated against the measured transfer and output characteristics of a commercial 1.2kV power MOSFET (Infineon IMW120R045M1) with a maximum current rating of 52A.

Fig: a) Transfer characteristics of SiC MOSFET with Vd=1 to 20V
b) Transconductance of SiC MOSFET with Vd=1 to 20V 

Acknowledgement: This work was supported in part by the Swarna Jayanti Fellowship under Grant DST/SJF/ETA02/2017-18 and in part by the Department of Science and Technology through the FIST Scheme under Grant SR/FST/ETII-072/2016 and Keysight Technologies, USA. The measurement of the device was carried out at Keysight Technologies, Japan.




Aug 30, 2021

Generalized EKV Compact MOSFET Model

On the Explicit Saturation Drain Current in the Generalized EKV Compact MOSFET Model
Francisco J. García-Sánchez, Life Senior Member, IEEE,
and Adelmo Ortiz-Conde, Senior Member, IEEE
IEEE TED Aug 9. 2021
DOI: 10.1109/TED.2021.3101186

*Solid State Electronics Laboratory, Universidad Simón Bolívar, Caracas 1080, Venezuela


Abstract: We present and discuss explicit closed-form expressions for the saturation drain current of short channel metal-oxide-semiconductorfield-effect transistors (MOSFETs) with gate oxide and interface-trapped charges, and including carrier velocity saturation, according to the generalized Enz-Krummenacher-Vittoz (EKV) MOSFET compact model. The normalized saturation drain current is derived as an explicit function of the normalized terminal voltages by solving the transcendental voltage versus charge equation using the Lambert W function. Because this special function is analytically differentiable, other important quantities, such as the transconductance and the transconductance-to-currentratio, can be readily expressed as explicit functions of the terminal voltages.
Fig: Comparison of simulated transfer characteristics with (red lines and symbols) and another without (black lines and symbols) radiation-induced oxide and interface-trapped charges. Calculation of VGB versus IDsat (lines) comes from denormalization and the explicit IDsat versus VGB (symbols) comes from denormalization of the proposed explicit expressions