Apr 26, 2018

Symposium on Schottky Barrier MOS Devices 2018

"devil of savior"
It is the 40th anniversary of Institut für Halbleitertechnik und Nanoelektronik (IHTN) of the TU Darmstadt, Germany. In addition to many activities in September, a small symposium on Schottky Barrier MOS (SB-MOS) devices is planned for August 7th in Darmstadt. This is the second meeting of an enthusiastic group of Schottky barrier researchers and this year it is sponsored by the EDS German chapter and hosted by the IHTN of TU Darmstadt.
This year the symposium is organized by Dr. Tillmann Krauss, Dr. Udo E. Schwalke, Dr. Mike Schwarz and the staff of the TU Darmstadt. The symposium starts at 11:00 am in the lecture hall at the ITHN TU Darmstadt. 
The following agenda is planned:






AGENDA:

11:00 – 11:15 Welcome and introduction by Prof. Schwalke
11:15 – 11:30 “Wrap-Up of Schottky Barrier Simulation Methodologies”, Dr. Mike Schwarz (Robert Bosch GmbH, NanoP THM) (15mins)
11:30 – 12:00 “DC/AC compact modeling of Tunnel-FETs”, Prof. Alexander Kloes (NanoP THM) (30mins)
12:00 – 12:30 “Benefits of Schottky Barrier vs. Conventional Doped Source/Drain MOS devices”, Dr. John Snyder (JCap, LLC) (30mins)
12:30 – 13:30 “Lunch”
13:30 – 14:00 “Nanowire Schottky devices”, Dr. Walter Weber (TU Dresden) (30mins)
14:00 – 14:30 “Nanoelectronics: From Silicon to Carbon”, Prof. Udo Schwalke (TU Darmstadt) (30mins)
14:30 – 14:45 “Coffee Break”
14:45 – 15:15 “Transfer-free fabrication of nanocrystalline graphene field-effect sensors”, Dennis Noll (TU Darmstadt) (30mins)
15:15 – 15:45 “Modeling of neuromorphic devices”, Dr. Laurie E. Calvet (Université Paris-Sud) (30mins)

Attendees are welcome to attend the symposium. Further information are present at http://www.iht.tu-darmstadt.de/ihtn_institute/

Apr 22, 2018

Performance Potential of #Ge #CMOS Technology From a Material-Device-Circuit Perspective https://t.co/cSWOhx5xSn #paper


from Twitter https://twitter.com/wladek60

April 22, 2018 at 03:19PM
via IFTTT

Subthreshold Modeling of TriGate Junctionless Transistors With Variable Channel Edges & Substrate Bias Effects https://t.co/ZScVIyoP3k #paper https://t.co/ZScVIyoP3k


from Twitter https://twitter.com/wladek60

April 22, 2018 at 03:03PM
via IFTTT

Compact Drain Current #Model for #TFT Under Bias Stress Condition https://t.co/t8RWZbee7Z


from Twitter https://twitter.com/wladek60

April 22, 2018 at 03:31PM
via IFTTT

Apr 20, 2018

[Extended Deadline] Special IEEE TED Issue on “Compact Modeling for Circuit Design"

Call for papers for 
Special IEEE TED Issue
on
Compact Modeling for Circuit Design

Extended deadline: May 15, 2018               Publication date: January 2019

In order to capture the full potential of semiconductor devices, compact device models and design software are critically needed. Predictive and physical device and circuit design software are required to accelerate development cycles and tackle issues of device efficiency, manufacturing yield and product stability. The performance/accuracy of the design software is dependent on the availability of accurate device models, and for circuit design, compact models.

In particular, compact device models are the vehicle that allows the design of circuits using the targeted devices. The compact model should not only accurately capture the physics of the device in all operation regimes, but at the same time should also have an analytical or semi-analytical formulation to be used in automated design tools for the simulation of circuits containing several or many devices. On the other hand, compact models can also be used as a tool to make clear estimations and predictions of the performances of future devices following technological trends. The lack of adequate compact models for a number of emerging devices is mostly due to the insufficient understanding of the physical mechanisms that govern their behaviours. Regarding many emerging non-silicon structures, devices, circuit and system designers very often rely on empirical behavioural macro-models and/or use existing silicon device compact models based on the conventional understanding of transport processes. However, for these emerging non-silicon devices, neither approach provides a fully adequate device description under all operation conditions, nor the quantitative predictive quality required for the accurate production quality design.

Therefore, the main objective of this dedicated special issue is to engage Electron Devices Community in a serious discussion with their scholarly contributions specifically focused on solving major challenges in the broad area of compact device modeling for circuit design.

Suggested topics include but not limited to:
  1. Silicon MOSFET modeling: Advanced Bulk MOSFETs; SOl MOSFETs; Multi-Gate MOSFETs: Double-Gate MOSFETs, Surrounding-Gate MOSFETs, FinFETs, UTB SOI MOSFETs; Junctionless MuGFETs; Power and High Voltage MOSFETs.
  2. Junction-based and compound semiconductor FET modeling: Advanced MESFETs; Advanced HEMTs; lIl-V and Ill-N; MOSFETs; Advanced IFETs.
  3. Diode and bipolar transistor modeling: Advanced BJTs; HBTs; IGBTs; pn and pin diodes; Varactors.
  4. Emerging transistor modeling: Tunnel FETs; Molecular transistors; Single Electron Transistors; Quantum Dot Transistors; Negative Capacitance Transistors.
  5. Emerging semiconductor devices: Memories, MRAM, PCRAM etc.; Spintronic devices; Layered/2D materials
  6. Thin-Film FETS (TFT): a-Si:H TFTs; Polycrystalline Si TFTs; OTFTs and OECTs; Oxide TFTs; Single-crystal TFTs.
  7. Modeling of physical effects: Noise; High frequency operation; Mismatch; Strain; High energy particle interactions in ICs (Cosmic rays and energy beams); ESD events; Ballistic and quasi-ballistic transport; Layout dependent effects.
  8. Photonic devices: LEDs and OLEDs; Photodiodes; Solar cells; Photodetectors; SPADs.
  9. Model implementation in EDA tools and applications: Model code adaptation to EDA tools; Computational model performances in design tools; Challenges of model implementation in design tools; Compact model applications to variation and statistical analysis; Compact model applications to thermal analysis; Compact model applications to design exploration; Compact model applications to design optimization; Compact model applications to device process improvements; Compact modeling for BSD prediction; Circuit design using new compact models.
Submission instructions: Manuscripts should he submitted in a double column format using an IEEE style file Please visit the following link to download the templates:
http://www,ieeeiorg/publicationsistandards/publications/authors/author7templates,html
In your cover letter, please indicate that your submission is for this special issue. Please submit papers using the website: http://mc.manuscriDtcentral.com/ted

Guest Editors:
  1. Benjamin Iniguez, URV, Tarragona (SP) Editor-in-Chief
  2. Yogesh Chauhan, IIT Kanpur (IN)
  3. Andries Scholten, NXP Semiconductors, Eindhoven (NL)
  4. Ananda Roy, Intel Corporation, Portland, OR (USA)
  5. Slobodan Mijalkovic, Silvaco Europe Ltd, St. Ives (UK)
  6. Sadayuki Yoshitomi, Toshiba Corporation, Tokyo (J)
  7. Kejun Xia, NXP Semiconductors, Phoenix, AZ (USA)
  8. Wladek Grabinski, GMC Consulting, Commugny (CH)
  9. Kaikai Xu, UEST of China, Chengdu (CN) 

You received this message because you are subscribed to the Google Groups "mos-ak" group.
To unsubscribe from this group and stop receiving emails from it, send an email to mos-ak+unsubscribe@googlegroups.com.
To post to this group, send email to mos-ak@googlegroups.com.
Visit this group at https://groups.google.com/group/mos-ak.
For more options, visit https://groups.google.com/d/optout.

Direct Measurement of Active Near-Interface Traps in the Strong-Accumulation Region of 4H- #SiC #MOS Capacitors https://t.co/e0jNWoZfQn #paper https://t.co/e0jNWoZfQn


from Twitter https://twitter.com/wladek60

April 20, 2018 at 08:15PM
via IFTTT

Book Performance Report 2017/18

(as of April 2018)

POWER/HVMOS Devices Compact Modeling
Editors: Grabinski, Wladyslaw, Gneiting, Thomas (Eds.)
ISBN 978-90-481-3046-7 (ebook)
ISBN 978-90-481-3045-0 (print book)

Availability of and results for eBook

Since its online publication on February 25, 2010, there has been a total of 5,796 chapter downloads for eBook on SpringerLink. The table to the right shows the download figures for the last year(s).
  • In addition to the collections, Springer eBooks are available for individual use from our web shop. The book can be ordered/downloaded directly from its home page. 
  • MyCopy: book is available as a MyCopy version, which is a unique service that allows library patrons to order a personal, printed-on-demand softcover edition of an eBook for just $/€24.99. 
  • To further widen the distribution of eBook, it has also been made available in the following shop(s):
    Amazon Kindle Shop
    Apple iTunes
    Google play
eBooks reach a broad readership and provide global visibility for the book.


Spreading the word about the book

To present the book POWER/ HVMOS Devices Compact Modeling to its potential readers and make it findable by search engines, it has its own home page, which can be shared through social media and where you can download a flyer for the book! In 2017 this page was visited 112 times. 
  • The book has been announced by the New Book Alert, our largest customer emailing. 
  • Journal editors, journalists or bloggers can request a free Online Review Copy of the book from its home page. This online service makes it especially easy for them to write a review. All potencial, reviews can be an excellent way to boost a book’s visibility in the relevant communities and raise reader interest!
Year Chapter Downloads
2017 766
2016 843
2015 912
2014 1,333
2013 658
2012 420
2011 401
2010 463

Apr 19, 2018

EDS DL MQ Gdynia Maritime University, June 20, 2018, Gdynia, Poland

EDS Distinguished Lecturer Mini-Colloquium
SiC: technology, devices, modeling
Gdynia Maritime University, June 20, 2018, Gdynia, Poland
admission: free of charge

organized by: ED Poland Chapter
Gdynia Maritime University
Instytut Technologii Elektronowej (ITE, Warsaw)
technical support: Lodz University of Technology, Department of Microelectronics and Computer Science
venue: Gdynia Maritime University
ul. Morska 83, 81-225 Gdynia, Poland

9:00-9:05
Introduction
Dr. Daniel Tomaszewski, IEEE EDS Member, ITE, Warsaw
9:05-9:50 SiC technology offerings; challenges and opportunities
Lecturer: Dr. Muhammad Nawaz, IEEE Senior Member, IEEE EDS Distinguished Lecturer,
ABB Corporate Research, Sweden
Abstract: A wide bandgap SiC technology has now entered in transitional phase on various power electronics front; thanks to its superior physical properties such as wide bandgap, larger breakdown field strength, higher carrier saturation velocity, and larger thermal conductivity than that of Si counterpart. Low voltage SiC MOSFET discrete devices and power modules within voltage range of 1.2-1.7 kV are commercially available. On the other side, medium voltage MOSFET devices of 3.3-6.5 kV and high voltage MOSFET devices of 10-15 kV are also visible in the scientific literature with excellent static and dynamic performance, illustrating the potential benefit for high power applications in energy transmission and distribution networks. This talk will focus on the requirement and issues using SiC MOSFETs facing high power applications while addressing simultaneously the potential benefits for high power converters. Reliability concerns from the end user’s perspective will be addressed as well.
10:00-10:45 On the way to the Energy and Variability Efficient (E.V.E.) Era
Lecturer: Prof. Simon Deleonibus, IEEE Fellow, IEEE EDS Distinguished Lecturer, Fellow Electrochemical Society, CEA Research Director, France
Abstract: Major power consumption reduction will drive future design of technologies and architectures that will request less greedy devices and interconnect systems. The electronic market will be able to face an exponential growth thanks to the availability and feasibility of autonomous and mobile systems necessary to societal needs. The increasing complexity of high volume fabricated systems will be possible if we aim at zero intrinsic variability, and generalize 3-dimensional integration of hybrid, heterogeneous technologies at the device, functional and system levels. Weighing on the world energy saving balance will be possible and realistic by maximizing the energy efficiency of co integrated Low Power and High Performance Logic and Memory devices.The future of Nanoelectronics will face the major concerns of being Energy and Variability Efficient (E.V.E.).
10:55-11:15 Coffee break
11:15-12:00 SiC power device fabrication and path to commercialization
Lecturer: Prof. Victor Veliadis, IEEE Fellow, IEEE EDS Distinguished Lecturer, Deputy Executive Director and CTO, PowerAmerica Professor of Electrical and Computer Engineering, North Carolina State University
Abstract: The presentation will discuss major SiC power device application areas and touch on foundry models, cost reduction strategies, and path to commercialization. The advantages of SiC over other power electronic materials will be outlined, and SiC devices currently developed for power electronic applications will be introduced. Emphasis will be placed on SiC MOSFETs, which are currently being inserted in the majority of SiC based power electronic systems. Aspects of device fabrication will be given, with stress on processes that do not carry over from the mature Si manufacturing world and are thus specific to SiC. Finally, the presentation will highlight common SiC Edge Termination techniques, which allow devices to reach their full high-voltage potential.
12:10-12:55 The importance of the diffusion currents in the photoelectric investigations of the MIS system
Lecturer: Prof. Henryk M. Przewłocki, IEEE Senior Member, IEEE EDS Distinguished Lecturer, Instytut Technologii Elektronowej (ITE Warsaw), Poland
Abstract: The fundamental property of any nanoelectronic material or system is its energy band diagram, which allows to predict its physical properties, potential applications and/or limitations. The most effective methods of band diagram determination are the photoelectric methods, which deserve therefore detailed theoretical analysis, as well as precisely controlled experimental procedures. It is shown in this paper that the commonly accepted and currently applied theory (further called classical theory) of internal photoemission in the metal-insulator-semiconductor (MIS) system, which very well represents its experimental characteristics taken at high enough electric fields E, in the insulator, fails at low electric fields (usually for E < (104-105) V/cm), i.e. in the vicinity of the point where the photocurrent changes sign (I=0). This failure of the classical theory will be demonstrated by comparing the characteristics calculated using the classical theory with the experimental characteristics taken in the range of low electric fields in the insulator. It was already shown some time ago, by the present author that this discrepancy results from the neglect of the diffusion currents, which become important at low electric fields in the insulator. In this paper the origin, the magnitude and the role of diffusion current in determination of the MIS system photoelectric characteristics at low electric fields in the insulator will be quantitatively analyzed. The theory of the photocurrent vs. gate voltage characteristics, at different wavelengths of light illuminating the structure under test, with diffusion currents taken into account will be presented. It will be shown that characteristics calculated using this theory remain in good agreement with the relevant experimental characteristics. The ability to accurately predict these characteristics in the range of low electric fields opens the possibilities of developing new measurement methods of the MIS system crucial parameters. Examples of such methods will be demonstrated.
13:05-14:05 Lunch Break
14:05-14:50 Verilog-A compact modelling of SiC devices with Qucs-S, QucsStudio and MAPP/Octave FOSS tools
Lecturer: Prof. Mike Brinson, Fellow of the IET, CEng., Member of the Institute of Physics, CPhys. Centre for Communications Technology, London Metropolitan University, UK
Abstract: The purpose of this presentation is provide an overview of the fundamentals of the Verilog-A hardware description language and its use in compact modelling of established and emerging semiconductor technology devices. With the adoption of Verilog-A as the standardised model interchange language by CMC, a knowledge of this subject is of increasing importance to the modelling community. Similarly, access to freely available Verilog-A modelling tools and circuit simulators is essential if Verilog-A modelling techniques are to be widely adopted. For this reason, in an attempt to encouraging all who attend to experiment with Verilog-A. the presentation is based on the Qucs-S, QucsStudio and the MAPP/Octave FOSS software. Throughout the talk a series of modelling case studies outline the stages in the development of Verilog-A models for established and SiC semiconductor devices. In the later stages of the presentation participants are also introduced to using the Berkeley MAPP tools with Qucs-S/Xyce.
15:00-15:45 FOSS TCAD/EDA Tools for Advanced Compact Modeling
Lecturer: Dr. Wladek Grabinski, IEEE Senior Member, IEEE EDS Distinguished Lecturer, MOS-AK (EU), Switzerland
Abstract: Compact/SPICE models of circuit elements (passive, active, MEMS, RF) are essential to enable advanced IC design using nanoscaled semiconductor technologies. Compact/SPICE models are also a communication means between the semiconductor foundries and the IC design teams to share and exchange all engineering and design information. To explore all related interactions, we are discussing selected FOSS CAD tools along complete technology/design tool chain from nanascaled technology processes; thru the MOSFET, FDSOI, FinFET and TFET compact modeling; to advanced IC transistor level design support. New technology and device development will be illustrated by application examples of the FOSS TCAD tools: Cogenda TCAD and DEVSIM. Compact modeling will be highlighted by review topics related to its parameter extraction and standardization of the experimental and measurement data exchange formats. Finally, we will present two FOSS CAD simulation and design tools: ngspice and Qucs. Application and use of these tools for advanced IC design (e.g. analog/RF IC applications) directly depends the quality of the compact models implementations in these tools as well as reliability of extracted models and generated libraries/PDKs. Discussing new model implementation into the FOSS CAD tools (Gnucap, Xyce, ngspice and Qucs as well as others) we will also address an open question of the compact/SPICE model Verilog-A standardization. We hope that this presentation will be useful to all the researchers and engineers actively involved in the developing compact/SPICE models as well as designing the integrated circuits in particular at the transistor level and then trigger further discussion on the compact/SPICE model Verilog-A standardization and development supporting FOSS CAD tools.
15:55 End of MQ

Apr 17, 2018

Apr 14, 2018

A new approach to the extraction of single exponential diode #model parameters https://t.co/qc5i9xwEwK


from Twitter https://twitter.com/wladek60

April 14, 2018 at 03:33PM
via IFTTT

Apr 3, 2018

[mos-ak] [2nd Announcement and Call for Papers] 3rd Sino MOS-AK Workshop Peking, June 14-16 2018

Arbeitskreis Modellierung von Systemen und Parameterextraktion 
Modeling of Systems and Parameter Extraction Working Group
3rd Sino MOS-AK Workshop
Peking, June 14-16 2018

Together with the Honorary Committee Chair, Yan Wang, Tsinghua Universitylocal organization team and International MOS-AK Board of R&D Advisers as well as all the Extended MOS-AK TPC Committee, we have pleasure to invite to the 3rd Sino MOS-AK Compact/SPICE Modeling Workshop which will be organized at Tsinghua University between June 14-16, 2018.

Planned 3rd Sino MOS-AK Workshop aims to strengthen a network and discussion forum among experts in the field, enhance open platform for information exchange related to compact/SPICE modeling and Verilog-A standardization, bring academic and industrial experts in the compact modeling field together, as well as obtain feedback from technology developers, circuit designers, and CAD/EDA tool developers and vendors. 

Venue
会议场所:清华大学FIT-楼,在紫光国际国际交流中心旁
Tsinghua University FIT building, close to Tsinghua Unisplendour International Center

Topics to be covered include the following among other related to the compact/SPICE modeling and its Verilog-A standardization:
  • Compact Modeling (CM) of the electron devices
  • Advances in semiconductor technologies and processing
  • Verilog-A language for CM standardization
  • New CM techniques and extraction software
  • Open Source TCAD/EDA modeling and simulation
  • CM of passive, active, sensors and actuators
  • Emerging Devices, TFT, CMOS and SOI-based memory cells
  • Microwave, RF device modeling, high voltage device modeling
  • Nanoscale CMOS devices and circuits
  • Technology R&D, DFY, DFT and reliability/ageing IC Designs
  • Foundry/Fabless Interface Strategies
SpeakersInvited talks tentative listing (alphabetic order)
  • Prof. Mansun Chan; Compact Models for Giga-Scale Memory System
  • Dr. Axel Huelsmann; mHEMT based MMICs, Modules, and Systems for mmWave Applications
  • Dr.-Ing. Franz Sischka; Successful and Verified RF Measurements for Device Modeling
  • Dr. Lifeng Wu; A Full Design Flow Solution for OLED Flat Panel Display
  • Dr. Pete Zampardi; Understanding Gaps in III-V HBT Modeling and Simulation
Important Dates: 
  • Call for Papers - March 2018
  • 2nd Announcement - April 2018
  • Final Workshop Program - May 2018
  • MOS-AK Workshop - June 14-16 2018
    • Day 1: MOS-AK Tutorial Day
    • Day 2: MOS-AK SPICE/Verilog-A Modeling Workshop
    • Day 3: MOS-AK SPICE/Verilog-A Modeling Workshop
Online Abstract Submission is open 
(any related enquiries can be sent to abstract@mos-ak.org)
Manuscript submission deadline: 28th May 2018 (Monday)
Notification of Acceptance: 4th June 2018 (Monday)
Submission of final manuscript: 11th June 2018 (Monday)

Online Workshop Registration is open 
(any related enquiries can be sent to registration@mos-ak.org)

Postworkshop IJHSES Publications:
Selected best MOS-AK technical presentation will be recommended for further publication in a special issue of the International Journal of High Speed Electronics and Systems

International MOS-AK Committee:
  • Honorary Committee Chair
    • Yan Wang, Tsinghua University
  • Advisory Committee
    • George Ponchak, T-MTT Editor
    • Yuhua Cheng, PKU
  • Organizing Committee General Co-Chairs:
    • Min Zhang, XMOD Technologies
    • Wladek Grabinski, MOS-AK (EU)
  • Finance Chair:
    • Li Zhang, Tsinghua University
  • Publication Chair: 
    • Wladek Grabinski, MOS-AK (EU)
  • Awards Committee Chair:
    • Zhiping Yu, Stanford University
  • Sponsorship Chair:
    • Li Zhang, Tsinghua University
    • Min Zhang, XMOD Technologies
  • Exhibition Chair:
    • Jin Chen, SIMIT
    • Kai Lv, NUS
  • Local Arrangements Chair:
    • Wenfei Hu, Tsinghua University
  • Publicity:
    • Sen Yin, Tsinghua  University
  • Workshop Secretary:
    • Li Zhang
    • Office: +86 010 62771733; 
    • Mobile: +86 138 01302877
    • Email: zhangli95@tsinghua.edu.cn
Extended MOS-AK Committee
WG03043018

--
You received this message because you are subscribed to the Google Groups "mos-ak" group.
To unsubscribe from this group and stop receiving emails from it, send an email to mos-ak+unsubscribe@googlegroups.com.
To post to this group, send email to mos-ak@googlegroups.com.
Visit this group at https://groups.google.com/group/mos-ak.
For more options, visit https://groups.google.com/d/optout.

(NEW DEADLINE: 10 APRIL) ESSDERC Call for Papers

Call for Papers 
(NEW DEADLINE: 10 APRIL

PAPER SUBMISSION: Manuscript guidelines as well as instructions on how to submit electronically ARE AVAILABLE HERE. Papers must not exceed four A4 pages with all illustrations and references included. All submissions must be received by (NEW DEADLINE): 10 APRIL

Papers submitted for review must clearly state:

  • The purpose of the work
  • How and to what extent it advances the state-of-the-art
  • Specific results and their impact

Only work that has not been previously published or submitted elsewhere will be considered. Submission of a paper for review and subsequent acceptance is considered as a commitment that the work will not be publicly available prior to the conference [read more...]

Mar 24, 2018

Modeling Nanowire and Double-Gate Junctionless Field-Effect Transistors by F. Jazaeri and J.-M. Sallese https://t.co/YYHqopRbzX #paper https://t.co/L7D2Zlrhg6 https://t.co/glgZxWJ6qC


from Twitter https://twitter.com/wladek60

March 24, 2018 at 04:06PM
via IFTTT

#paper: " #Circuit #aging has become a real reliability concern, because it leads to an increase in transistor threshold voltage that may cause timing errors as a result of higher delays in critical paths” https://t.co/CSbMZ94Yrg https://t.co/CSbMZ94Yrg


from Twitter https://twitter.com/wladek60

March 24, 2018 at 02:21PM
via IFTTT

#AR2 6 axis #robot is an #opensource platform https://t.co/Xf4WRoy8cx https://t.co/jb0c3bzxIf


from Twitter https://twitter.com/wladek60

March 24, 2018 at 01:31PM
via IFTTT

Anomalous #CV Inversion in #TSVs: The Problem and Its #Cure #paper https://t.co/meiOoj9ulj


from Twitter https://twitter.com/wladek60

March 24, 2018 at 11:25AM
via IFTTT

Mar 22, 2018

[mos-ak] [press note] Spring'18 MOS-AK Workshop in Munich on March 13, 2018

Arbeitskreis Modellierung von Systemen und Parameterextraktion 
Modeling of Systems and Parameter Extraction Working Group
Spring'18 MOS-AK Workshop
Munich, March 13, 2018


The MOS-AK Compact Modeling Association, a global compact/SPICE modeling and Verilog-A standardization forum, held its Spring compact/SPICE workshop in Munich. The event was hosted on March 13, 2018, by Infineon Technologies AG in Neubiberg. The technical program of the event was coordination by Klaus-Willi Pieper, Infineon, and the MOS-AK TPC Committee. The workshop has received full industrial sponsorship by Infineon Technologies AG (lead sponsor) with technical program promotion provided by ASCENT NetworkKeysight TechnologiesIJHSES as well as NEEDS of nanoHUB.org

The MOS-AK workshop was opened by Klaus-Willi Pieper, Principal Compact Modeling Smart Power Devices at Infineon, who has welcomed all the attendees and shared Infineon view on the compact modeling and its importance in the TCAD/EDA modeling/design ecosystem. 

A group of 40+ international academic researchers and modeling engineers attended 10 technical compact modeling presentations covering full development chain from the nanoscaled technologies thru semiconductor devices modeling to advanced IC design support. The MOS-AK speakers have shared their latest perspectives on compact/SPICE modeling and Verilog-A standardization in the dynamically evolving semiconductor industry and academic R&D. The event featured advanced technical presentations covering compact model development, implementation, deployment and standardization covering full engineering R&D chain: TCAD/processing, device modeling, transistor level IC design support. These contributions were delivered by leading academic and industrial experts, including: [1] Klaus-Willi Pieper, Overview of the Compact Modeling at Infineon; [2] James Ma et al, Advanced Fast on-wafer Low-frequency Noise Measurement with High Resolution, Wide Bandwidth and Large Biasing Current Range; [3] Volker Gloeckel, Advances in Statistical Compact Modeling; [4] Markus Becherer, et al, Compact Modeling of Nanomagnetic Logic Devices and Circuits; [5] Gražvydas Žiemys, Devices for Nanomagnetic Logic; [6] Paul Roseingrave, Modelling Emerging Devices through EU ASCENT Network; [7] Jushan Xie, How Is CMC Standard Model Implemented and Verified In Simulator?; [8] Maria Cotorogea et al, Virtual Prototyping for Power Diode and IGBT Development; [9] Franz Sischka, et al, Modeling of Device Aging - Example: Diode; [10] Katja Puschkarsky, Device Aging Simulations Enabling Circuit Optimizations; [11] Fabio A. Velarde Gonzalez, Integration of Aging Models Across Different EDA Environments A case study implementing HCI and NBTI models for X-FAB XU035 CMOS technology; During complementary MOS-AK Panel Discussion on Compact Model Licensing Peter Lee, CMC Chair highlighted current status of the CMC compact model licensing status, stating that final discussions are converging to establish official licensing in the next few months. All the presentations are available online for download at <http://www.mos-ak.org/munich_2018/>. Selected best presentation will be recommended for further publication in the IJHSES.

The MOS-AK, international compact modeling association, has various deliverables and initiatives including a book entitled "Open Source TCAD/EDA Tools for Compact Modeling" and open Verilog-A model directory with supporting FOSS TCAD/EDA tools. The MOS-AK Association plans to continue its standardization efforts by organizing future compact modeling meetings, workshops and courses in Europe, USA, China and India throughout coming 2018/2019 years, including:

About MOS-AK Association:

MOS-AK, an international compact modeling association primarily focused in Europe, to enable international compact modeling R&D exchange in the North/Latin Americas, EMEA and Asia/Pacific Regions. The MOS-AK Modeling Working Group plays a central role in developing a common information exchange system among foundries, CAD vendors, IC designers and model developers by contributing and promoting different elements of compact/SPICE modeling and its Verilog-A standardization and related CAD/EDA tools including FOSS for the compact/SPICE models development, validation/implementation and distribution. For more information please visit: mos-ak.org

About  Infineon Technologies AG:
Infineon designs, develops, manufactures and markets a broad range of semiconductors and system solutions. The focus of its activities is on automotive electronics, industrial electronics, RF applications, mobile devices and hardware-based security. Combining entrepreneurial success with responsible action, at Infineon we make the world easier, safer and greener. Barely visible, semiconductors have become an indispensable part of our daily lives. Infineon's components play an essential role wherever electric energy is generated, transmitted and used efficiently. Furthermore, they safeguard data communication, improve safety on roads and reduce automotive emissions. Product range includes:
  • Automotive: 32-bit automotive microcontrollers for powertrain, safety and driver assistance systems, discrete power semiconductors, IGBT modules, industrial microcontrollers, magnetic and pressure sensors, power ICs, radar sensor ICs (77 GHz), transceivers (CAN, LIN, Ethernet, FlexRay), voltage regulators
  • Industrial Power Control: bare die business, discrete IGBTs, driver ICs, IGBT modules (low-power, medium-power, high-power), IGBT module solutions incl. IGBT stacks, silicon carbide modules
  • Power Management & Multimarket: control ICs, customized chips (ASICs), discrete low-voltage and high-voltage power MOSFETs, gallium nitride (GaN) transistors, GPS low-noise amplifiers, low-voltage and high-voltage driver ICs, MEMS and ASICs for silicon microphones, pressure sensors, radar sensor ICs (24 GHz, 60 GHz), RF antenna switches, TVS (transient voltage suppressor) diodes
  • Chip Card & Security: contact-based security controllers, contactless security controllers, dual-interface security controllers (contact-based and contactless), embedded security controllers
Presence: 36 research and development locations, 18 manufacturing locations and about 44 sales offices worldwide

--
You received this message because you are subscribed to the Google Groups "mos-ak" group.
To unsubscribe from this group and stop receiving emails from it, send an email to mos-ak+unsubscribe@googlegroups.com.
To post to this group, send email to mos-ak@googlegroups.com.
Visit this group at https://groups.google.com/group/mos-ak.
For more options, visit https://groups.google.com/d/optout.

Capacitive #RF #MEMS switch design and simulation https://t.co/z6KeAsfzac #Modeling https://t.co/GeegWnsUDG


from Twitter https://twitter.com/wladek60

March 22, 2018 at 10:48AM
via IFTTT

Mar 9, 2018

[1889 reeds] Open-source circuit simulation tools for RF compact semiconductor device #modeling https://t.co/OeqgG1ChLD


from Twitter https://twitter.com/wladek60

March 09, 2018 at 10:30AM
via IFTTT

Mar 6, 2018

Experimental Observation and Simulation #Model for Transient Characteristics of Negative-Capacitance in... https://t.co/Q73Mvkixlp


from Twitter https://twitter.com/wladek60

March 06, 2018 at 02:31PM
via IFTTT

Experimental Observation and Simulation #Model for Transient Characteristics of Negative-Capacitance in Ferroelectric HfZrO2 Capacitor https://t.co/ijwoKP4zCM


from Twitter https://twitter.com/wladek60

March 06, 2018 at 02:31PM
via IFTTT

ENBIOS-2D Lab

Aldi Hoxha1, Paolo Scarbolo1, Andrea Cossettini2, Federico Pittino3, Luca Selmi4
1. DPIA, Università degli Studi di Udine 2. University of Udine 3. Università di Udine 4
DPIA, Università degli Studi di Udine, Italy

Abstract: ENBIOS-2D Lab is a tool to illustrate and to study simple Ion Sensitive Field Effect Transistor structures in two dimensions. Together with its companion tool ENBIOS-1D Lab, it is meant for use as a teaching tool in support of undergraduate or graduate courses on the basic physics of transduction in ion and particle sensors, and to assist early stage researchers getting familiar with some basic concepts in the field. At the present stage, ENBIOS-2D Lab supports simulation and visualization of DC I-V characteristics, impedance/admittance spectra as well as DC and AC potential/carrier/ion distributions in simple two-dimensional ISFET structures. A broader set of case studies will become available with future releases of the tool. The companion ENBIOS-1D Lab tool offers the possibility to simulate simple Electrolyte/Insulator/Semiconductor systems in one-dimension. The physical system is modelled with the Poisson/Boltzmann (DC) and Poisson/Nernst/Planck - Poisson/Drift/Diffusion (AC small signal) equations coupled to the site-binding charge model equations at the Electrolyte/Insulator interfaces. Dedicated models are implemented for the frequency and salinity dependence of the electrolyte electrical permittivity and the temperature dependence of the ions' mobility (in water solvent). ENBIOS-2D Lab is powered by ENBIOS, (Electronic Nano-BIOsensor Simulator), a general purpose three-dimensional Control Volume Finite Element Method (CVFEM) simulator developed in-house at the University of Udine - Italy. ENBIOS simulates in three dimensions (3D) the DC and AC small signal impedance response to ions and micro/nanoparticles of three-dimensional devices made of semiconductor, insulator and electrolyte materials.
References:

[1] P. Scarbolo, E. Accastelli, F. Pittino, T. Ernst, C. Guiducci, L. Selmi, “Characterization and modelling of differential sensitivity of nanoribbon-based pH-sensors”, Proceedings of the 2015 Transducers - 18th International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS), 21-25 June 2015, pp. 2188-2191

[2] Paolo Scarbolo, Enrico Accastelli, Thomas Ernst, Carlotta Guiducci and Luca Selmi, "Analysis of Dielectric Microbead Detection by Impedance Spectroscopy with Nanoribbons", IEEE Nano Conference, August 2016.

[3] Federico Pittino and Luca Selmi, "Use and comparative assessment of the CVFEM method for Poisson–Boltzmann and Poisson–Nernst–Planck three dimensional simulations of impedimetric nano-biosensors operated in the DC and AC small signal regimes", Comput. Methods Appl. Mech. Engrg., v.278, (2014), pp.902–923.


Mar 4, 2018

A New Analytical Pinned Photodiode Capacitance #Model - IEEE Journals & Magazine https://t.co/3IiJn8I4MH https://t.co/1Hea8LzBUn


from Twitter https://twitter.com/wladek60

March 04, 2018 at 12:45PM
via IFTTT

A New Analytical Pinned Photodiode Capacitance #Model - IEEE Journals & Magazine https://t.co/3IiJn8I4MH


from Twitter https://twitter.com/wladek60

March 04, 2018 at 12:45PM
via IFTTT

Mar 2, 2018

[paper] Compact modeling of SiC Schottky barrier diode and its extension to junction barrier Schottky diode

Dondee Navarro1, Fernando Herrera1, Hiroshi Zenitani2, Mitiko Miura-Mattausch1, Naoto Yorino2, Hans Jürgen Mattausch1,2, Mamoru Takusagawa3, Jun Kobayashi3 and Masafumi Hara3

Published 19 February 2018 • © 2018 The Japan Society of Applied Physics
Japanese Journal of Applied Physics, Volume 57, Number 4S

1 HiSIM Research Center, Hiroshima University, Hiroshima 739-8530, Japan
2 Graduate School of Engineering, Hiroshima University, Hiroshima 739-8530, Japan
3 Toyota Motor Corporation, Toyota, Aichi 470-0309, Japan

Abstract: A compact model applicable for both Schottky barrier diode (SBD) and junction barrier Schottky diode (JBS) structures is developed. The SBD model considers the current due to thermionic emission in the metal/semiconductor junction together with the resistance of the lightly doped drift layer. Extension of the SBD model to JBS is accomplished by modeling the distributed resistance induced by the p+ implant developed for minimizing the leakage current at reverse bias. Only the geometrical features of the p+ implant are necessary to model the distributed resistance. Reproduction of 4H-SiC SBD and JBS current–voltage characteristics with the developed compact model are validated against two-dimensional (2D) device-simulation results as well as measurements at different temperatures [read more: https://doi.org/10.7567/JJAP.57.04FR03]

Fig.: Electron current density in a JBS cross-section. JBS has a peak density at the n− region adjacent to the p+ implant.