Showing posts with label AC. Show all posts
Showing posts with label AC. Show all posts

Jan 9, 2026

[Review] Organic Transistors Compact Models

Monideepa Dutta, Nikhil Ranjan Das, Benjamin Iñiguez, Alexander Kloes, Ghader Darbandy
Review of DC and AC Core Compact Models and Device Performance in Organic Transistors 
J. Appl. Phys. 139, 010701 (2026 Open Access)
DOI: 10.1063/5.0303946

1. NanoP, TH Mittelhessen University of Applied Sciences, 35390 Gießen (D)
2. Institute of Radio Physics and Electronics, University of Calcutta, West Bengal (IN)
3. Department of Electronic Engineering, Universitat Rovira i Virgili, 43007 Tarragona (SP)

Abstract: Organic transistors offer lightweight, flexible, and low-cost platforms for large-area electronics, making them particularly attractive for applications in wearables and biosensing. Their effective use requires detailed characterization and accurate simulation, with compact models providing the foundation for predicting device behavior and enabling reliable circuit-level design. Yet, the diversity of organic semiconductors and the complexity of charge transport demand multiple core modeling approaches, each built on distinct physical assumptions. First, this review summarizes reported lateral and vertical organic transistor architectures, outlining their structural principles and material implementations. It then considers core compact physics-based models for both DC and AC operation, emphasizing their formulations, underlying assumptions, and the physical effects they incorporate. Finally, it reviews reported DC and AC characteristics across diverse material systems, with particular attention to bias-normalized parameters that enable consistent and meaningful cross-study comparisons. By exploring existing core models and performance analyses, this review highlights the fundamental physical principles incorporated into reported compact models and bridges device-level physics with application-oriented circuit design. It offers a comparative perspective on modeling strategies suitable for flexible and biointegrated electronics, while identifying key overlaps in the literature and providing a foundational framework for efficient future model development. Additionally, the review underscores the importance of harmonized terminology to accelerate the development of next-generation models and enhance consistency across studies.

Fig : Virtual-source point x0 in the channel, where the carrier charge and velocity are defined, corresponding to the peak of the conduction band profile.

Acknowledgments : The authors would like to acknowledge the funding from the German Research Foundation (DFG) under Grant Nos. “DA 2578/2-1” and “INST169/22-1.”

Jan 12, 2022

[paper] Pseudo-morphic PHEMT: Numerical Simulation Study

Khaouani Mohammed, Hamdoune Abdelkader, Guen Ahlam Bouazza, Kourdi Zakarya, Hichem Bencherif
An Improved Performance of Al0.25Ga0.75N/AlN/GaN/Al0.25Ga0.75N Pseudo-morphic High Electron Mobility Transistor (PHEMT): 
Numerical Simulation Study
IC-AIRES 2021. Lecture Notes in Networks and Systems, vol 361. Springer
DOI: 10.1007/978-3-030-92038-8_80




1. Hassiba Benbouali, Chlef, Algeria
2. University of Abou-Bakr Belkaid, Tlemcen, Algeria
3. Center Exploitation Satellite Communications Agency of Space Oran, Algeria
4. University of Mostefa Benboulaid, Batna, Algeria 

Abstract: In this paper a 9nm T-shaped gate length, Pseudo-morphic High Electron Mobility Transistor (pHEMT AlGaN/AlN/GaN/AlGaN) is studied; we use TCAD software. DC, AC and RF performances assessment allow to exhibit interesting results such as a maximum drain current IDSmax=35mA at VGS=0V, a knee voltage Vknee=0.5V with ON-resistance Ron=0.8Ω-mm, a sub-threshold swing of 75mV/decade, a maximum transconductance value gm=160mS/mm, a DIBL of 36mV/V, a drain lag of 8.5%, a cut-off frequency of 110GHz, a maximum oscillation frequency of 800GHz, and very suitable breakdown voltage VBR of 53.1V. This device can be used in radar, high power and amplifier applications.


Mar 6, 2018

ENBIOS-2D Lab

Aldi Hoxha1, Paolo Scarbolo1, Andrea Cossettini2, Federico Pittino3, Luca Selmi4
1. DPIA, Università degli Studi di Udine 2. University of Udine 3. Università di Udine 4
DPIA, Università degli Studi di Udine, Italy

Abstract: ENBIOS-2D Lab is a tool to illustrate and to study simple Ion Sensitive Field Effect Transistor structures in two dimensions. Together with its companion tool ENBIOS-1D Lab, it is meant for use as a teaching tool in support of undergraduate or graduate courses on the basic physics of transduction in ion and particle sensors, and to assist early stage researchers getting familiar with some basic concepts in the field. At the present stage, ENBIOS-2D Lab supports simulation and visualization of DC I-V characteristics, impedance/admittance spectra as well as DC and AC potential/carrier/ion distributions in simple two-dimensional ISFET structures. A broader set of case studies will become available with future releases of the tool. The companion ENBIOS-1D Lab tool offers the possibility to simulate simple Electrolyte/Insulator/Semiconductor systems in one-dimension. The physical system is modelled with the Poisson/Boltzmann (DC) and Poisson/Nernst/Planck - Poisson/Drift/Diffusion (AC small signal) equations coupled to the site-binding charge model equations at the Electrolyte/Insulator interfaces. Dedicated models are implemented for the frequency and salinity dependence of the electrolyte electrical permittivity and the temperature dependence of the ions' mobility (in water solvent). ENBIOS-2D Lab is powered by ENBIOS, (Electronic Nano-BIOsensor Simulator), a general purpose three-dimensional Control Volume Finite Element Method (CVFEM) simulator developed in-house at the University of Udine - Italy. ENBIOS simulates in three dimensions (3D) the DC and AC small signal impedance response to ions and micro/nanoparticles of three-dimensional devices made of semiconductor, insulator and electrolyte materials.
References:

[1] P. Scarbolo, E. Accastelli, F. Pittino, T. Ernst, C. Guiducci, L. Selmi, “Characterization and modelling of differential sensitivity of nanoribbon-based pH-sensors”, Proceedings of the 2015 Transducers - 18th International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS), 21-25 June 2015, pp. 2188-2191

[2] Paolo Scarbolo, Enrico Accastelli, Thomas Ernst, Carlotta Guiducci and Luca Selmi, "Analysis of Dielectric Microbead Detection by Impedance Spectroscopy with Nanoribbons", IEEE Nano Conference, August 2016.

[3] Federico Pittino and Luca Selmi, "Use and comparative assessment of the CVFEM method for Poisson–Boltzmann and Poisson–Nernst–Planck three dimensional simulations of impedimetric nano-biosensors operated in the DC and AC small signal regimes", Comput. Methods Appl. Mech. Engrg., v.278, (2014), pp.902–923.


Jun 29, 2015

QUCS: Project of the Week, June 1, 2015

 The Qucs is one of the featured projects for the week (June 1, 2015), which appear on the front page of SourceForge.net:

 Qucs is a circuit simulator with a graphical user interface. The software aims to support all kinds of circuit simulation types such as, e.g. DC, AC, S-parameter, Transient, Noise, and Harmonic Balance analysis. Pure digital simulations are also supported.
[ Download Quite Universal Circuit Simulator ]