Tuesday, March 6, 2018


Aldi Hoxha1, Paolo Scarbolo1, Andrea Cossettini2, Federico Pittino3, Luca Selmi4
1. DPIA, Università degli Studi di Udine 2. University of Udine 3. Università di Udine 4
DPIA, Università degli Studi di Udine, Italy

Abstract: ENBIOS-2D Lab is a tool to illustrate and to study simple Ion Sensitive Field Effect Transistor structures in two dimensions. Together with its companion tool ENBIOS-1D Lab, it is meant for use as a teaching tool in support of undergraduate or graduate courses on the basic physics of transduction in ion and particle sensors, and to assist early stage researchers getting familiar with some basic concepts in the field. At the present stage, ENBIOS-2D Lab supports simulation and visualization of DC I-V characteristics, impedance/admittance spectra as well as DC and AC potential/carrier/ion distributions in simple two-dimensional ISFET structures. A broader set of case studies will become available with future releases of the tool. The companion ENBIOS-1D Lab tool offers the possibility to simulate simple Electrolyte/Insulator/Semiconductor systems in one-dimension. The physical system is modelled with the Poisson/Boltzmann (DC) and Poisson/Nernst/Planck - Poisson/Drift/Diffusion (AC small signal) equations coupled to the site-binding charge model equations at the Electrolyte/Insulator interfaces. Dedicated models are implemented for the frequency and salinity dependence of the electrolyte electrical permittivity and the temperature dependence of the ions' mobility (in water solvent). ENBIOS-2D Lab is powered by ENBIOS, (Electronic Nano-BIOsensor Simulator), a general purpose three-dimensional Control Volume Finite Element Method (CVFEM) simulator developed in-house at the University of Udine - Italy. ENBIOS simulates in three dimensions (3D) the DC and AC small signal impedance response to ions and micro/nanoparticles of three-dimensional devices made of semiconductor, insulator and electrolyte materials.

[1] P. Scarbolo, E. Accastelli, F. Pittino, T. Ernst, C. Guiducci, L. Selmi, “Characterization and modelling of differential sensitivity of nanoribbon-based pH-sensors”, Proceedings of the 2015 Transducers - 18th International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS), 21-25 June 2015, pp. 2188-2191

[2] Paolo Scarbolo, Enrico Accastelli, Thomas Ernst, Carlotta Guiducci and Luca Selmi, "Analysis of Dielectric Microbead Detection by Impedance Spectroscopy with Nanoribbons", IEEE Nano Conference, August 2016.

[3] Federico Pittino and Luca Selmi, "Use and comparative assessment of the CVFEM method for Poisson–Boltzmann and Poisson–Nernst–Planck three dimensional simulations of impedimetric nano-biosensors operated in the DC and AC small signal regimes", Comput. Methods Appl. Mech. Engrg., v.278, (2014), pp.902–923.

No comments: