Showing posts with label IC. Show all posts
Showing posts with label IC. Show all posts

Feb 9, 2021

[paper] On-Chip Coplanar Waveguides

José Valdés-Rayón, Roberto S. Murphy-Arteaga and Reydezel Torres-Torres; 
Determination of the Contribution of the Ground-Shield Losses 
to the Microwave Performance of On-Chip Coplanar Waveguides 
IEEE Transactions on MTT; Feb.3, 2021 
DOI: 10.1109/TMTT.2021.3053548 
* National Institute of Astrophysics, Optics and Electronics (INAOE), Department of Electronics, Tonantzintla, Puebla 72840, Mexico.

Abstract: In this article, we characterize and model two parasitic effects that become apparent in the performance of coplanar waveguide interconnects in CMOS. One is the transverse resistance introduced by a patterned ground shield in coplanar waveguide interconnects, which significantly contributes to the shunt losses. The other one is the parasitic coupling between the input and output ports through the ground shield. The latter effect is particularly accentuated in relatively short lines and complicates the determination of the propagation constant using line-line algorithms at several tens of gigahertz. We demonstrate that using the proposed methodology, excellent model-experiment correlation can be achieved in the modeling of these types of interconnects up to at least 60 GHz.

Funding: CONACyT-Mexico

Jan 6, 2021

Virtual Si Museum /2101/ Electron Devices Time Line

my own view on the electron devices time line. The electron devices scaling: from a single vacuum tube, a BJT, TTL digital ICs to 68719476736 devices in a NAND flash memory card. If you have something else to add, just let me know:

REF:
  1. Vacuum Tube GE 9-22 188-5
  2. 2N2905A BJT - PNP, -60 V, -600 mA, 600 mW, TO-39
  3. TTL 74F00 IC - 5V, quad 2-input NAND gate; series F (=fast) introduced in 1978
  4. 64Gb NAND flash memory card

Oct 12, 2020

[chapter] Low-Voltage Analog IC Design

Deepika Gupta1
Low-Voltage Analog Integrated Circuit Design
Nanoscale VLSI. Book series (ESIEE) (2020) pp 3-22
DOI: 10.1007/978-981-15-7937-0_1
1Department of Electronics and Communication Engineering, IIIT Naya Raipur, India

Abstract: In this chapter, we review the challenges and effective design techniques for ultra-low-power analog integrated circuits. With the miniaturization, having low-power low-voltage mixed signal IC is essential to maintain the electric field in the device. This constraint presents bottleneck for the researchers to design robust analog circuits. Specifically, the low value of supply voltage with small technology influences many specifications of analog IC, e.g., power supply rejection, dynamic range and immunity to noise, etc. In addition, it also affects the ability of the MOS transistor to be operated in the strong inversion region. Note that with the technology reduction, power supply VDD is reducing but the threshold voltage VT is not decreasing proportionally to maintain low leakage current. However, this process reduces the overdrive voltage and limits the staking of transistors. In this case, the transistor can be made to work in weak inversion to work and reduce the power consumption. Further, reduction in VDD to achieve low-power consumption causes many other circuit-related issues such as PVT variations, degradation of dynamic range, mismatching in circuits element and differential paths. There have been many design methods developed for the ultra-low-power analog ICs. In this chapter, we will discuss some of the design techniques to reduce the power consumption in analog ICs. In addition, we will also discuss the basic building blocks of analog circuits with discussed design techniques. The charge-based EKV model can be a very suitable example of a MOS simulation model to be used in all inversion regions of transistor operations [Enz 2017]. In EKV model, the smallest number of core parameters is needed for the accurate behavioral modeling of transistor. Particularly, charge-based EKV model is beneficial for the analysis of analog circuits because it allows the analysis with simple calculations over different inversion regions. Hence, developing new device simulation models specific for analog circuit design is crucial.
Fig: Vth and Vdd scaling trend vs. Leff  [Zhao 2006]
References:
[Enz 2018] Enz C, Chicco F, Pezzotta A (2017) Nanoscale MOSFET modeling-part 1: the simplified EKV model for the design of low-power analog circuits. IEEE Solid-State Circuits Magazine 9(3):26–35
[Zhao 2006] Zhao W, Cao Y (2006) New generation of predictive technology model for sub-45 nm early design exploration. IEEE Trans Electron Devices 53(11):2816–2823


Aug 25, 2020

Analog IC Designer's Handbook

by Jean-Francois Debroux
 
Abstract: Analog IC design is one of the particular design activities where designers get feedback on their choices only months after they finish their design and where the cost of even the smallest design change is huge.
This has historically brought the need for new tools such as SPICE, the ancestor of almost all the electric simulators, so as to give feedback on the design choices before actually getting the prototypes. This should also have deeply impacted the design methods, and it has, but the availability of simulators has finally allowed the old “try and fix” method not only to survive but also to stay very popular.
If tools such as electric simulators have gained popularity in most electronic design fields, even out of the IC design world, methods such as the TOP-DOWN approach are not as popular as they should be, especially in the analog design community, even in the analog IC design microcosm. This is probably because this method is felt as difficult to use practically even though most designers agree that it is the right approach.
The goal of this book is to show that the TOP-DOWN approach for analog design is not only valid but that it is one of the most powerful available methods to create good analog design without sacrificing the time to market. This method creates faster and better designs but requires a good understanding of the method itself, of course, but also of the underlying techniques and of the basic design elements.
After a general introduction of the TOP-DOWN method goals and principles in the first part, the second part presents and details analog IC design elements from components to basic building blocks with a strong emphasis on practical aspects. Various additional design techniques are then detailed in the third part. The reader is then ready for the main course, a series of design examples based on the TOP-DOWN method that are grouped in the fourth part. These examples are processed the way they are in real life, from specification to implementation, from general considerations down to implementation details. Analysis of existing circuits is useful for learning but real life design is synthesis, not analysis.
Finally, the fifth part introduces or reminds useful basic concepts and presents the notation in use through the book.
The methods and techniques described in this book have been used by the author through 25 years of analog and mixed signal ICs design experience in various application fields including RF and sensor signal conditioning for various markets such as industrial, automotive and aerospace. The author feels that the method he presents in this book can help many analog electronic designers in their day to day work and hopes it will bring both a deeper understanding of design and a broader view over design activities. [read more...]

Experience: See  Jean-Francois Debroux profile on LinkedIn

Nov 14, 2017

7th All-Russian Workshop on CAD of IC Design

7th All-Russian Workshop on computer aided design (CAD) of integrated circuits (IC) to be held at NRNU MEPhI on December 12-14, 2017. The free workshop is organized by NRNU MEPhI jointly with Cadence Design Systems. The program and further information about the Workshop is available via site cad.mephi.ru.

Program 
(with timetable and detailed information in pdf format)
12 December 2017
08:45 - 09:15Registration (University entrance)
09:30 - 13:00Conference hall 3rd floor of the main lecture building
- Synthesis in Genus (28nm technology)
- Introduction to Joules
- Innovus 17.1 Topical Introduction
13:00 - 14:00
Lunch break
14:00 - 18:15Conference hall 3rd floor of the main lecture building
- Introduction to Stylus
- Physical verification with the help of PVS
- A new generation of verification software - Xcelium and Indago
- The history and future of megatrends in EDA
13 December 2017
9:00 - 18:00
Laboratory V-315 of the Department of Electronics
(Practical classes)
- Behavioral modeling
- Logical synthesis
- Simulation of a Verilog modules with element delays
- Physical design of the digital modules
- Verification of the digital modules
14 December 2017


10:00 - 12:00Laboratory V-315 of the Department of Electronics
- Working discussions, summarizing

Contact Event Secretary: E. Atkin
+7 495 7885699 ext. 9155
+7 499 3242597

Sep 12, 2017

[book] Systematic Design of Analog CMOS Circuits

Paul G. A. Jespers, Boris Murmann
Cambridge University Press; 31 Oct 2017; 342pp

Discover a fresh approach to efficient and insight-driven analog integrated circuit design in nanoscale-CMOS with this hands-on guide. Expert authors present a sizing methodology that employs SPICE-generated lookup tables, enabling close agreement between hand analysis and simulation. This enables the exploration of analog circuit tradeoffs using the gm/ID ratio as a central variable in script-based design flows, and eliminates time-consuming iterations in a circuit simulator. Supported by downloadable MATLAB code, and including over forty detailed worked examples, this book will provide professional analog circuit designers, researchers, and graduate students with the theoretical know-how and practical tools needed to acquire a systematic and re-use oriented design style for analog integrated circuits in modern CMOS.

Feb 28, 2017

[paper] Readout electronics for LGAD sensors

Readout electronics for LGAD sensors
O. Alonso,a N. Franch,a J. Canals,a F. Palacio,a M. López,a A. Vilà,a A. Diéguez,a
M. Carulla,b D. Flores,b S. Hidalgo,b A. Merlos,b G. Pellegrinib and D. Quirionb
aDepartment of Engineering: Section of Electronics, University of Barcelona,
C/ Martí i Franquès nº1, Barcelona, 08028 Spain
bInstituto de Microelectrónica de Barcelona — Centro Nacional de Microelectrónica (IMB-CNM),
Campus UAB, Cerdanyola del Vallès, Bellaterra, Barcelona, 08193 Spain
doi:10.1088/1748-0221/12/02/C02069

Abstract: In this paper, an ASIC fabricated in 180 nm CMOS technology from AMS with the very front-end electronics used to readout LGAD sensors is presented as well as its experimental results. The front-end has the typical architecture for Si-strip readout, i.e., preamplification stage with a Charge Sensitive Amplifier (CSA) followed by a CR-RC shaper. Both amplifiers are based on a folded cascode structure with a PMOS input transistor and the shaper only uses passive elements for the feedback stage. The CSA has programmable gain and a configurable input stage in order to adapt to the different input capacitance of the LGAD sensors (pixelated, short and long strips) and to the different input signal (depending on the gain of the LGAD). The fabricated prototype has an area of 0.865mm  0.965mm and includes the biasing circuit for the CSA and the shaper, 4 analog channels (CSA+shaper) and programmable charge injection circuits included for testing purposes. A first approach to find the proper dimensioning of the input transistor has been done using a Matlab script, where the transconductance value has been calculated with the EKV model

Acknowledgments This work has been partially funded by the Spanish national projects FPA2013-48387 and FPA2015-71292. In addition, this work has been done in the framework of RD50 CERN collaboration.

Jun 15, 2016

[book] Compact Models for Integrated Circuit Design

 Compact Models for Integrated Circuit Design: 
 Conventional Transistors and Beyond
 Samar K. Saha
Taylor & Francis, 26 Aug 2015 - Technology & Engineering - 545 pages - ISBN 9781482240665

Compact Models for Integrated Circuit Design: Conventional Transistors and Beyond provides a modern treatise on compact models for circuit computer-aided design (CAD). Written by an author with more than 25 years of industry experience in semiconductor processes, devices, and circuit CAD, and more than 10 years of academic experience in teaching compact modeling courses, this first-of-its-kind book on compact SPICE models for very-large-scale-integrated (VLSI) chip design offers a balanced presentation of compact modeling crucial for addressing current modeling challenges and understanding new models for emerging devices.
Starting from basic semiconductor physics and covering state-of-the-art device regimes from conventional micron to nanometer, this text:
  • Presents industry standard models for bipolar-junction transistors (BJTs), metal-oxide-semiconductor (MOS) field-effect-transistors (FETs), FinFETs, and tunnel field-effect transistors (TFETs), along with statistical MOS models
  • Discusses the major issue of process variability, which severely impacts device and circuit performance in advanced technologies and requires statistical compact models
  • Promotes further research of the evolution and development of compact models for VLSI circuit design and analysis
  • Supplies fundamental and practical knowledge necessary for efficient integrated circuit (IC) design using nanoscale devices
  • Includes exercise problems at the end of each chapter and extensive references at the end of the book

Compact Models for Integrated Circuit Design: Conventional Transistors and Beyond is intended for senior undergraduate and graduate courses in electrical and electronics engineering as well as for researchers and practitioners working in the area of electron devices. However, even those unfamiliar with semiconductor physics gain a solid grasp of compact modeling concepts from this book. [more...]

Feb 7, 2016

Device to GDSII for IC Design Training

Hands on Training Program on “Device to GDSII for IC Design”
on 22-27 Feb 2016
Organized by VLSI Division of School of Electronics Engineering
Vellore Institute of Technology, Near Katpadi Rd Vellore, Tamil Nadu - 632014


The relentless march fast of the CMOS has slowed down and the semiconductor industry is looking for novel and innovative devices. Many novel devices are being explored currently. TCAD and Cadence tool allows us to generate new structures, circuits and analyze its performance. Unlike other circuit simulators, TCAD and Cadence needs a special training. This hands on training addresses this gap.

Target Audience: Faculty, students and research scholars from various engineering colleges of India. The number of participants is limited to 40. 

Topics to ďe addressed:

Using TCAD:
  • Structure Creation, Simulation and Device Simulation 
  • Process Simulation 
  • Multi-gate Transistors 
  • Radiation study on devices and circuits
Using Cadence: 
  • RTL Design and Simulation 
  • Synthesis and low power synthesis Using RTL Compiler 
  • Physical aware synthesis and DFT 
  • Block and Top Level P&R Using SOC Encounter 
  • STA Using Timing Engine 


Nov 11, 2015

[ESSCIRC 2015] Low-power analog RF circuit design based on the inversion coefficient

[ref] Enz, Christian; Chalkiadaki, Maria-Anna; Mangla, Anurag, "Low-power analog/RF circuit design based on the inversion coefficient," in ESSCIRC 2015 - 41st , vol., no., pp.202-208, 14-18 Sept. 2015

Abstract: This paper discusses the concept of the inversion coefficient as an essential design parameter that spans the entire range of operating points from weak via moderate to strong inversion, including velocity saturation. Several figures-of-merit based on the inversion coefficient, especially suitable for the design of low-power analog and RF circuits, are presented. These figures-of-merit incorporate the various trade-offs encountered in analog and RF circuit design. The use of the inversion coefficient and the derived figures-of-merit for optimization and design is demonstrated through simple examples. Finally, the simplicity of the inversion coefficient based analytical models is emphasized by their favorable comparison against measurements of a commercial 40-nm bulk CMOS process as well as with simulations using the BSIM6 model.

Keywords: Analytical models, Integrated circuits, Noise, Radio frequency, Silicon, Transconductance, Transistors, BSIM6

URL / doi: 10.1109/ESSCIRC.2015.7313863

Jan 3, 2012

Scientific employee, PhD student, or postdoc at TU Dresden

in circuit design 
on organic, flexible, roll-to-roll-printed & plastic-based semiconductor technologies 

The period of employment is governed by the Fixed Term Research Contracts Act (Wissenschaftszeitvertragsgesetz - WissZeitVG). The position is in the frame of the FLEXIBILITY (Flexible Multifunctional Bendable Integrated Light-Weight Ultra-Thin Systems) project funded by the EU involving 7 industry partners and 4 research institutions. PhD students will find excellence prerequisites for an innovative PhD thesis. The first wireless communication receiver fully integrated in a piece of plastic foil (without the need for a silicon chip) will be developed. The project is coordinated by our chair and provides an excellent platform for interdisciplinary cooperation with industry partners. 
Tasks
Design (analyses, simulation, device modelling, layout, testing and documen-tation) of circuits and systems operating up to radio frequencies in novel OLAE (Organic and Large Area Electronics) and roll-to-toll printed technologies for wireless communications. The authoring of scientific publications and the participation at project meetings and international conferences are expected. The active involvement in project management is planned for postdocs. 
Requirements:
Excellent to good master, Dipl.-Ing. or PhD degree in microelectron-ics, electrical engineering, physics or chemistry. Knowledge in circuit design, inde-pendent and flexible working attitude, innovative and analytical thinking, strong commitment, communicative team-player, good English. Knowledge in the following areas is advantageous: Integrated circuit design, OLAE, device modelling, high frequency engineering, communications and semiconductor technologies, measure-ment techniques, German language.
Miscellaneous:
Applications from women are particularly welcome. The same applies to the disabled. Interested candidates are requested to submit concise application material including CV and copy of certificates per email in pdf format to Frank.Ellinger@tu-dresden.de [read more...]