Showing posts with label Field Effect Transistors. Show all posts
Showing posts with label Field Effect Transistors. Show all posts

Jan 28, 2024

[paper] Modeling a 2D Electrostatic Potential in MOS Devices

Francois Lim, Benjamin IƱiguez, Alexander Kloes
A new analytical method for modeling a 2D electrostatic potential in MOS devices, 
applicable to compact modeling
J. Appl. Phys. 28 January 2024; 135 (4): 044501
DOI: 10.1063/5.0188863

Abstract: This paper presents a new conformal mapping method to solve 2D Laplace and Poisson equations in MOS devices. More specifically, it consists of an analytical solution of the 2D Laplace equation in a rectangular domain with Dirichlet boundary conditions, with arbitrary values on the boundaries. The advantages of the new method are that all four edges of the rectangle are taken into account and the solution consists of closed-form analytical expressions, which make it fast and suitable for compact modeling. The new model was validated against other similar methods. It was found that the new model is much faster, easier to implement, and avoids many numerical issues, especially near the boundaries, at the cost of a very small loss in accuracy.

FIG: (a) The calculated 2D potential from the closed-form analytic model,
for a Double Gate MOSFET with tsc=12nm, tox=1.6nm, and L=25nm.
(b) Corresponding equipotentials. 

Acknowledgments: This work was funded by the Spanish Ministry of Science through Contract No. PRX21/00726.





Jul 31, 2023

[book] Negative Capacitance Field Effect Transistors


Negative Capacitance Field Effect Transistors
Physics, Design, Modeling and Applications


Edited By Young Suh Song, Shubham Tayal, Shiromani Balmukund Rahi, Abhishek Kumar Upadhyay


Pages 63 Color & 7 B/W Illustrations
ISBN 9781032445311 176 Sept. 29, 2023 by CRC Press


Description
This book aims to provide information in the ever-growing field of low-power electronic devices and their applications in portable device, wireless communication, sensor, and circuit domains. Negative Capacitance Field Effect Transistor: Physics, Design, Modeling and Applications, discusses low-power semiconductor technology and addresses state-of-art techniques such as negative-capacitance field-effect transistors and tunnel field-effect transistors. The book is broken up into four parts. Part one discusses foundations of low-power electronics including the challenges and demands and concepts like subthreshold swing. Part two discusses the basic operations of negative-capacitance field-effect transistor (NC-FET) and Tunnel Field-effect Transistor (TFET). Part three covers industrial applications including cryogenics and biosensors with NC-FET. This book is designed to be one-stop guidebook for students and academic researchers, to understand recent trends in the IT industry and semiconductor industry. It will also be of interest to researchers in the field of nanodevices like NC-FET, FinFET, Tunnel FET, and device-circuit codesign.

Table of Contents
Chapter 1 Recent Challenges in IT and Semiconductor Industry: From Von Neumann Architecture to the Future
Young Suh Song, Shiromani Balmukund Rahi, Navjeet Bagga, Sunil Rathore, Rajeewa Kumar Jaisawal, P. Vimala, Neha Paras, K. Srinivasa Rao
Chapter 2 Technical Demands of Low-Power Electronics
Soha Maqbool Bhat, Pooran Singh, Ramakant Yadav, Shiromani Balmukund Rahi, Billel Smaani, Abhishek Kumar Upadhyay, Young Suh Song
Chapter 3 Negative capacitance Field Effect Transistors: Concept and Technology
Ball Mukund Mani Tripathi
Chapter 4 Basic Operation Principle of Negative Capacitance Field Effect Transistor
Malvika, Bijit Choudhuri, Kavicharan Mummaneni
Chapter 5 Basic Operational Principle of Anti-ferroelectric Materials and Ferroelectric Materials
Umesh Chandra Bind, Shiromani Balmukund Rahi
Chapter 6 Basic Operation Principle of Optimized NCFET: Amplification Perspective
S. Yadav, P.N Kondekar, B. Awadhiya
Chapter 7 Spin Based Magnetic Devices With Spintronics
Asif Rasool, Shahnaz kossar, R.Amiruddin
Chapter 8 Mathematical Approach for Future Semiconductor Roadmap
Shiromani Balmukund Rahi,Abhishek Kumar Upadhyay, Young Suh Song, Nidhi Sahni, Ramakant Yadav, Umesh Chandra Bind,Guenifi Naima,Billel Smaani,Chandan Kumar Pandey,Samir Labiod, T.S. Arun Samul,Hanumanl Lal, H. Bijo Josheph
Chapter 9 Mathematical Approach for Foundation of Negative Capacitance Technology
Shiromani Balmukund Rahi,Abhishek Kumar Upadhyay, Young Suh Song, Nidhi Sahni, Ramakant Yadav, Umesh Chandra Bind,Guenifi Naima,Billel Smaani,Chandan Kumar Pandey,Samir Labiod, T.S. Arun Samul,Hanumanl Lal, H. Bijo Josheph


Jun 7, 2023

[book] Tunneling Field Effect Transistors

Tunneling Field Effect Transistors
Design, Modeling and Applications

Edited By T. S. Arun Samuel, Young Suh Song, Shubham Tayal, P. Vimala, Shiromani Balmukund Rahi

ISBN 9781032348766
1st Edition; 316 Pages; 15 Color & 232 B/W Illustrations
June 8, 2023 by CRC Press

Description: This book will give insight into emerging semiconductor devices from their applications in electronic circuits, which form the backbone of electronic equipment. It provides desired exposure to the ever-growing field of low-power electronic devices and their applications in nanoscale devices, memory design, and biosensing applications.

Tunneling Field Effect Transistors: Design, Modeling and Applications brings researchers and engineers from various disciplines of the VLSI domain to together tackle the emerging challenges in the field of nanoelectronics and applications of advanced low-power devices. The book begins by discussing the challenges of conventional CMOS technology from the perspective of low-power applications, and it also reviews the basic science and developments of subthreshold swing technology and recent advancements in the field. The authors discuss the impact of semiconductor materials and architecture designs on TFET devices and the performance and usage of FET devices in various domains such as nanoelectronics, Memory Devices, and biosensing applications. They also cover a variety of FET devices, such as MOSFETs and TFETs, with various structures based on the tunneling transport phenomenon.

The contents of the book have been designed and arranged in such a way that Electrical Engineering students, researchers in the field of nanodevices and device-circuit codesign, as well as industry professionals working in the domain of semiconductor devices, will find the material useful and easy to follow.

Table of Contents:
Chapter 1. Challenges of Conventional Cmos Technology in Perspective of Low Power Applications
Chapter 2. Basic Science and Development of Subthreshold Swing Technology
Chapter 3. Historical Development of MOS technology to Tunnel FETs
Chapter 4. Modeling of Gate Engineered TFETs: Challenges and Opportunities
Chapter 5. Modeling of Gate Engineered TFET: challenges and Opportunities.
Chapter 6. Evolution of Heterojunction Tunnel Field Effect Transistor and its Advantages
Chapter 7. Analog / RF performance analysis of TFET device
Chapter 8. DC Analysis and Analog/HF Performances of GAA-TFET with Dielectric Pocket
Chapter 9. Investigation on Ambipolar Current Suppression in Tunnel FETs
Chapter 10. Analysis of Channel Doping Variation on Transfer Characteristics to High Frequency performance of F-TFET
Chapter 11. Design of Nanotube TFET Biosensor
Chapter 12. TFET-based Memory Cell Design with Top-down Approach
Chapter 13. Designing of nonvolatile memories utilizing Tunnel Field Effect Transistor
Chapter 14. TFET-based Universal
Chapter 15. TFET-based Level Shifter Circuits for Low Power Applications