Jul 12, 2021

[PhD] Cryogenic MOSFET Modeling

Cryogenic MOSFET Modeling for Large-Scale Quantum Computing
Arnout Lodewijk M BECKERS
Thèse n° 8365 2021
DOI: 10.5075/epfl-thesis-8365

Présentée le 28 mai 2021

Faculté des sciences et techniques de l’ingénieur Laboratoire de circuits intégrés Programme doctoral en génie électrique

pour l’obtention du grade de Docteur ès Sciences par
Arnout Lodewijk M BECKERS

Acceptée sur proposition du jury:
Prof. E. Charbon, président du jury
Prof. C. Enz, directeur de thèse
Prof. B. Parvais, rapporteur
Prof. G. Ghibaudo, rapporteur
Dr J.-M. Sallese, rapporteur 

Abstract: Promising results of state-of-the-art quantum computers fuel a world-wide effort in academic and private research laboratories to scale up the number of qubits and improve their characteristics in large arrays. To meet the scale-up challenge, innovative microelectronic architectures are envisioned hosting qubits and transistors in silicon. Integrated-circuit design for deep-cryogenic temperatures (below 10 K or -263.15°C) is a challenging optimization exercise that currently leads to costly iterations due to the lack of physics-based transistor models for these temperatures. Proposed enhancements to the industry-standard transistor models neglect the low-temperature physics and do not suffice for a large-volume application. This PhD thesis pushes the state-of-the-art of the characterization, physics, and modeling of CMOS (Complementary Metal Oxide Semiconductor) transistors down to deep-cryogenic temperatures. The most advanced commercial bulk CMOS technology (28-nm minimum gate length) is measured down to 4.2 K using dip-stick measurements and probe-station measurements. The temperature behavior of the physical parameters and the analog figures-of-merit is reported. A similar characterization study is presented for a 28-nm FDSOI CMOS technology using measurements provided by CEA-Léti through the EU H2020 MOS-Quito Project. It is shown that the design methodology based on the transconductance efficiency remains valid down to 4.2 K for both advanced CMOS processes. These results are already supporting the community: qubit controllers in 28-nm bulk and FDSOI technologies have been successfully deployed in the cryostats of quantum computers by Google and CEA-Léti, respectively. Industry-standard models have been honed over many years for near room-temperature operation. They show the largest discrepancies in the sub- and near-threshold regimes when used at deep-cryogenic temperatures. Therefore, this thesis presents an in-depth study of these regimes. Generalized Boltzmann relations are derived including band tails, which are valid in subthreshold. Using these relations, a new analytical theory is derived for the subthreshold swing that rolls off from the Boltzmann limit, showing that an ideal step-like switch cannot be obtained in the 0-K limit due to shallow band-edge states. The process quality must be improved to operate devices closer to the Boltzmann limit. Moreover, the transconductance efficiency in weak inversion (subthreshold) follows the new theoretical limit instead of the Boltzmann temperature limit. This mitigates the expected current savings from biasing in weak inversion. The new theory also explains the impossible inverse temperature dependence of the subthreshold-slope factor, which has been extracted in numerous characterizations in the literature. Furthermore, a threshold-voltage model for bulk CMOS is presented including dopant freezeout and interface traps. Process engineers can benefit from this model to customize transistors for use at 4.2 K. Finally, the discrepancy of the transfer characteristics in moderate inversion (near-threshold) is modeled with an improved representation of the localized band-edge states. As such, this PhD thesis lays the groundwork for next-generation deep-cryogenic IC design benefiting from physics-based knowledge. While this thesis is oriented toward quantum computing, the results also apply to other deep-cryogenic applications at the forefront of science and engineering.
Fig: Different explanations have been proposed for the deviation of the subthreshold swing (SS) from the Boltzmann limit at deep-cryogenic temperatures (below a critical temperature Tc). This led to the introduction of band-edge states to explain SS(T)

How to double research citations?

 

https://www.psypost.org/2021/07/the-sci-hub-effect-can-almost-double-the-citations-of-research-articles-study-suggests-61425

[RsyPost] For their study, the researchers examined 8,661 scientific articles published in three multidisciplinary journals (Nature, Science, and Proceedings of the National Academy of Sciences), three economic journals (The Quarterly Journal of Economics, Journal of Political Economy, and Econometrica), three consumer research journals (Journal of Consumer Research, Journal of Retailing and Consumer Services, and Journal of Consumer Psychology), and three neuroscience journals (Nature Reviews Neuroscience, Nature Neuroscience, and Neuron).

The articles were published between September 2015 and February 2016. About half of them had been downloaded from Sci-Hub, while the other half had never been downloaded from the website.


PsyPost is an independently-owned psychology and neuroscience news website dedicated to reporting the latest research on human behavior, cognition, and society. The publication covers the latest discoveries in psychology, psychiatry, neuroscience, sociology, and similar fields.







Jul 9, 2021

#OpenPOWER Foundation | #Libre-SOC #180nm Power ISA ASIC Submitted to Imec for Fabrication https://t.co/S4K6p9gFcb #semi https://t.co/2yDUzjKJqN



from Twitter https://twitter.com/wladek60

July 09, 2021 at 12:22AM
via IFTTT

Jul 8, 2021

[paper] eSim: An Open Source EDA Tool

Rahul Paknikar, Saurabh Bansode, Gloria Nandihal, Madhav P. Desai, Kannan M. Moudgalya, 
and Ashutosh Jha*
eSim: An Open Source EDA Tool for Mixed-Signal and Microcontroller Simulations
4th International Conference on Circuits, Systems and Simulation
(ICCSS), 2021, pp. 212-217,
DOI: 10.1109/ICCSS51193.2021.9464198.

Indian Institute of Technology Bombay, Mumbai, Maharashtra, India
* Vellore Institute of Technology Chennai, Tamil Nadu, India


Abstract: The ability to carry out simulations before making a PCB can save a lot of time, effort and cost. This work explains the creation of an open source mixed-signal simulation software eSim that will be of great help to students, hobbyists, the SME sector and startups. Analog and digital components are respectively modelled using SPICE and a hardware descriptive language in eSim. Inclusion of AVR based microcontroller as a part of the digital circuit is demonstrated through its instructions implemented as a C code library. This methodology could be used to provide support to other microcontroller families, such as PIC, STM and also more sophisticated controllers. These concepts are demonstrated through a few examples.
Fig: Workflow of NGHDL

Acknowledgment: The authors would like to thank Prof. Pramod Murali, Department of Electrical Engineering, IIT Bombay and Mrs. Usha Viswanathan, FOSSEE, IIT Bombay for their guidance. We would also like to express our gratitude towards Powai Labs Technology Private Limited for their gratis contribution to the VHPIDIRECT package and Utility package of NGHDL. The FOSSEE project is funded by the National Mission on Education through ICT, Ministry of Education, Govt. of India.





Special Issue on the 60th anniversary of the first laser



from Twitter https://twitter.com/wladek60

July 08, 2021 at 03:39PM
via IFTTT