Showing posts with label Mathematical models. Show all posts
Showing posts with label Mathematical models. Show all posts

Apr 16, 2024

[paper] SiC Power MOSFET SPICE modelling

Akbar Ghulam
Accurate & Complete behaviourial SPICE modelling 
of commercial SiC Power MOSFET OF 1200V, 75A
25th EuroSimE, Catania, Italy, 2024, pp. 1-4,
DOI: 10.1109/EuroSimE60745.2024.10491420

* UNIPA Palermo (IT)

Abstract: Silicon Carbide (SiC) is proved to be an excellent replacement for Silicon in high voltage and high frequency applications due to its electro-thermal properties. Since SiC power MOSFETs have only recently been more widely available commercially, accurate simulation models are immediately required to forecast device behavior and facilitate circuit designs. The goal of this paper is to develop an accurate LTSPICE model based on a modified Enz-Krumenacher-Vittoz (EKV), MOSFET model for a 1200V, 30mΩ & 75ASiC power MOSFET “SCTW100N120G2AG” provided by STMicroelectronics that is currently on the market. The modified EKV model outperforms the reduced quadratic model by describing MOSFET behavior over different zones which are weak, moderate, and strong inversion zones with only a single equation. A wide range of experimental data was used to build the model's parameters. To estimate device performance in high frequency switching applications, the model has been expanded to include package parasitic components that include parasitic capacitances. The model's static and transient properties were simulated, and the results were compared with those acquired from the actual device.
FIG: The SiC MOSFET's circuit schematic utilizing a modified EKV model

Acknowledgements: We would like to thank STMicroelectronics, as for completion of this study has been greatly aided by their participation and availability of relevant data.

Jan 8, 2024

[paper] Polylogarithms in MOSFET Modeling

A. Ortiz-Conde and F. J. García-Sánchez
Recent Applications of Polylogarithms in MOSFET Modeling
2023 IEEE 33rd International Conference on Microelectronics
MIEL, Nis, Serbia, 2023, pp. 1-8
DOI: 10.1109/MIEL58498.2023.10315897

Department of Electronics and Circuits, Universidad Simón Bolívar, Caracas, Venezuela

Abstract: We present a review of recent uses of the special mathematical function known as the polylogarithm for MOSFET modeling applications. We first summarize some basic properties of polylogarithms, with a particular focus on those with negative exponential argument. After examining cases of the use of first order polylogarithms pertinent to electron device modeling, we explain the reasons that motivate the use of polylogarithms of diverse orders for formulating mono- and poly-crystalline succinct compact MOSFET models. We then analyze a particular representative example: the modeling of polysilicon MOSFETs using the polylogarithm. Recalling that polylogarithms may be used to faithfully represent Fermi-Dirac Integrals in general, and considering that they are analytically differentiable and integrable, we describe a full Fermi–Dirac Statistics-based version of the usually approximate Boltzmann Statistics-based MOSFET Surface Potential Equation (SPE).

TABLE: Some Features of Polylogarithms with Negative Exponential Argument