Showing posts with label silicon carbide. Show all posts
Showing posts with label silicon carbide. Show all posts

Apr 16, 2024

[paper] SiC Power MOSFET SPICE modelling

Akbar Ghulam
Accurate & Complete behaviourial SPICE modelling 
of commercial SiC Power MOSFET OF 1200V, 75A
25th EuroSimE, Catania, Italy, 2024, pp. 1-4,
DOI: 10.1109/EuroSimE60745.2024.10491420

* UNIPA Palermo (IT)

Abstract: Silicon Carbide (SiC) is proved to be an excellent replacement for Silicon in high voltage and high frequency applications due to its electro-thermal properties. Since SiC power MOSFETs have only recently been more widely available commercially, accurate simulation models are immediately required to forecast device behavior and facilitate circuit designs. The goal of this paper is to develop an accurate LTSPICE model based on a modified Enz-Krumenacher-Vittoz (EKV), MOSFET model for a 1200V, 30mΩ & 75ASiC power MOSFET “SCTW100N120G2AG” provided by STMicroelectronics that is currently on the market. The modified EKV model outperforms the reduced quadratic model by describing MOSFET behavior over different zones which are weak, moderate, and strong inversion zones with only a single equation. A wide range of experimental data was used to build the model's parameters. To estimate device performance in high frequency switching applications, the model has been expanded to include package parasitic components that include parasitic capacitances. The model's static and transient properties were simulated, and the results were compared with those acquired from the actual device.
FIG: The SiC MOSFET's circuit schematic utilizing a modified EKV model

Acknowledgements: We would like to thank STMicroelectronics, as for completion of this study has been greatly aided by their participation and availability of relevant data.

Sep 24, 2020

[paper] Ultra-High Voltage SiC IGBT

Wide-Range Prediction of Ultra-High Voltage SiC IGBT Static Performance
Using Calibrated TCAD Model
Daniel Johannesson1,2, Keijo Jacobs1, Staffan Norrga1, Anders Hallén3
Muhammad Nawaz2 and Hans-Peter Nee1,2
Materials Science Forum Submitted: 2019-09-19
ISSN: 1662-9752, Vol. 1004, pp 911-916  
DOI:10.4028/www.scientific.net/MSF.1004.911

1Division of Electric Power and Energy Systems, KTH , Sweden
2ABB Corporate Research, Västerås, Sweden
3Division of Electronics, KTH, Sweden

Abstract: In this paper, a technology computer-aided design (TCAD) model of a silicon carbide (SiC) insulated-gate bipolar transistor (IGBT) has been calibrated against previously reported experimental data. The calibrated TCAD model has been used to predict the static performance of theoretical SiC IGBTs with ultra-high blocking voltage capabilities in the range of 20-50 kV. The simulation results of transfer characteristics, IC-VGE, forward characteristics, IC-VCE, and blocking voltage characteristics are studied. The threshold voltage is approximately 5 V, and the forward voltage drop is ranging from VF = 4.2-10.0 V at IC = 20 A, using a charge carrier lifetime of τA = 20 μs. Furthermore, the forward voltage drop impact for different process dependent parameters (i.e., carrier lifetimes, mobility/scattering and trap related defects) and junction temperature are investigated in a parametric sensitivity analysis. The wide-range simulation results may be used as an input to facilitate high power converter design and evaluation. In this case, the TCAD simulated static characteristics of SiC IGBTs is compared to silicon (Si) IGBTs in a modular multilevel converter in a general highpower application. The results indicate several benefits and lower conduction energy losses using ultra-high voltage SiC IGBTs compared to Si IGBTs.


Fig: 4H-SiC IGBT structure implemented in 2D TCAD simulator

Acknowledgment This work was funded through SweGRIDS, by the Swedish Energy Agency and ABB.

May 5, 2020

[paper] A Compact Model for SiC Schottky Barrier Diodes Based on the Fundamental Current Mechanisms

J. R. Nicholls and S. Dimitrijev
Queensland Micro- and Nanotechnology Centre
School of Engineering and Built Environment
Griffith University, Brisbane, QLD 4111, Australia
A Compact Model for SiC Schottky Barrier Diodes Based on the Fundamental Current Mechanisms
IEEE Journal of the Electron Devices Society
doi: 10.1109/JEDS.2020.2991121.

Abstract - We develop a complete compact model to describe the forward current, reverse current, and capacitance of SiC Schottky barrier diodes. The model is based on the fundamental current mechanisms of thermionic emission and tunneling, and is usable over a large range of voltages, temperatures, and for a large range of device parameters. We also demonstrate good agreement with measured data. Furthermore, the development of this model outlines a methodology for transforming a tunneling equation into a compact form without numerical integration-this methodology can potentially be applied to other device structures.
Fig: (a) Structure of a Schottky barrier diode. (b) Equivalent circuit of a Schottky barrier diode, consisting of two current sources (for the forward and reverse bias currents), a shunt capacitance and a series resistance

Acknowledgement - This work was performed at the Queensland Microtechnology Facility (Griffith University), part of the Queensland node of the Australian National Fabrication Facility (ANFF), a company established under the National Collaboration Research Infrastructure Strategy to provide nanofabrication and microfabrication facilities to Australia’s researchers. 

URL: https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9081977&isnumber=6423298