Showing posts with label ICs. Show all posts
Showing posts with label ICs. Show all posts

Oct 26, 2020

[CAS Seasonal School] How Technology is Impacting Agribusiness

How Technology is Impacting Agribusiness

A CAS seasonal school on technology and agribusiness will be held virtually from November 16th to November 20th. The program is quite interesting and we invite you to register through our web page www.asic-chile.cl. Registration is free.

The current world population of 7.6 billion is expected to reach 9.8 billion in 2050. According to the United Nations Food and Agriculture Organization (FAO) global agricultural productivity must increase by 50% – 70% to be able to feed the world population in 2050. Other researchers consider that reducing the waste of food would be enough.

Factors if not obstacles to be considered to meet global food demand by 2050 and beyond:
  • Less arable land: As cities are growing, the space allowed to agriculture is shrinking.
  • Climate change: Impacting dramatically agribusiness.
  • Role of the agribusiness on the GHG emissions.
  • Planet boundaries and the role of agribusiness.
  • Availability of freshwater.
  • Soil degradation.
The need has never been greater for innovative and sustainable solutions and technology should lead to significant improvement in our food and nutritional security.

In this seasonal school prestigious researchers and experts from all over the world will present the problems and challenges agribusiness is facing and how technologies such as IoT, AI, Machine Learning, sensors, electronic circuits, electronic systems, ICs, etc., can be applied to improve and solve the majority of those problems.

This is the first of a series of “Technology and Agribusiness” Seasonal Schools. It will be a meeting point for professionals working on Precision and Smart Agriculture, as well as professionals working on IoT, sensors, electronic circuits, electronic systems, ICs, etc.

We invite you to participate in this first version of the Technology and Agribusiness Seasonal School, which due to the pandemic will be 100% online and free of charge.

Join us!

Oct 6, 2020

[paper] Compact Modeling in MFIS Negative-Capacitance FETs

N. Pandey and Y. S. Chauhan
Analytical Modeling of Short-Channel Effects in MFIS Negative-Capacitance FET
Including Quantum Confinement Effects
in IEEE TED (Early Access), DOI: 10.1109/TED.2020.3022002.

Abstract: An analytical 2-D model of double-gate metal-ferroelectric-insulator-semiconductor-negative-capacitance FET (MFIS-NCFET), using Green's function approach, in the subthreshold region, is presented in this article. The explicit solution of coupled 2-D Landau-Devonshire and Poisson equations is analytically derived. Subsequently, an analytical and explicit model of subthreshold slope is developed from potential functions. The developed model includes quantum-mechanical effects, which considers not only geometrical confinements but also electrical confinements. The analytical solution of a 2-D nonhomogeneous Poisson equation coupled with the 1-D Schrödinger equation is used to obtain the potential function in the channel. The impact of the ferroelectric thickness (tfe) on quantum confinement is also studied. We find that larger tfe reduces the quantum confinement effect. Therefore, as tfe increases, threshold voltage roll-off with the variation in Si-body thickness decreases.
Fig: Schematic of DG MFIS-NCFET.

Aknowegement: This work was supported in part by the Swarna Jayanti Fellowship under Grant DST/SJF/ETA-02/2017-18 and in part by the FIST Scheme of the Department of Science and Tech- nology under Grant SR/FST/ETII-072/2016.