C. Medina-Bailon, J.L. Padilla, L. Donetti, C. Navarro, C. Sampedro, F. Gamiz,
Geometrical variability impact on the gate tunneling leakage mechanisms in FinFETs,
Solid-State Electronics, 2025, 109212,
ISSN 0038-1101,
DOI: 10.1016/j.sse.2025.109212.
Keywords: Geometrical variability; Gate leakage mechanism; Direct oxide tunneling; Trap assisted tunneling; Leakage current; MS-EMC; FinFET
Fig: Schematic FinFET device herein analyzed with confinement and transport directions (011) and <011>, respectively, and all the constant and varying geometrical parameters. Although FinFET is a 3D structure, it can be studied in a 2D approach, considering high aspect ratio fins (H>>TSi). In this 2D system, x and z are the transport and confinement directions, respectively; whereas y corresponds to the infinite direction. The 1D Schrödinger equation is solved for each grid point in the transport direction, and BTE is solved by the MC method in the transport plane.