Oct 27, 2016

2017 1st Electron Devices Technology and Manufacturing Conference (call for #papers) https://t.co/CAj9B5ifWU


from Twitter https://twitter.com/wladek60

October 27, 2016 at 05:08PM
via IFTTT

AMS Multi Project Wafer Service

AMS MPW Service:

ams' Multi Project Wafer (MPW) service, also known as shuttle runs, is a fast and cost-efficient prototyping service, which combines several designs from different customers onto a single wafer.

ams’ best in class MPW service offers significant cost advantages for foundry customers as the costs for wafers and masks are shared among a number of different shuttle participants. It includes the whole range of 0.18µm and 0.35µm specialty processes:
  • CMOS Mixed Signal
  • CMOS Mixed Signal with embedded EEPROM
  • CMOS High Voltage (up to 120 Volts)
  • CMOS High Voltage with embedded EEPROM
  • CMOS Opto
  • SiGe-BiCMOS
The complete MPW schedule including detailed start dates per process is available on the web at http://asic.ams.com/MPW

Deliverables: Participating the ams MPW service includes the delivery of 40 prototypes for design verification. Packaged engineering samples are offered within 2 days (ceramic) and 3 weeks (plastics) cycle time, respectively. The total turnaround time from MPW deadline to delivery is app. 8 weeks (CMOS). Overall, ams offers almost 150 MPW start dates in 2016 and 2017, enabled by long lasting co-operations with partner organizations such as CMP, Europractice, Fraunhofer IIS and Mosis. Customers located in APAC region may also participate via our local MPW program partners Toppan Technical Design Center Co., Ltd (TDC) and MEDs Technologies [read more...]

ARM Fellow Surveys Moore's Law at 3nm IC https://t.co/JUPsAtrkFb #papers


from Twitter https://twitter.com/wladek60

October 27, 2016 at 10:43AM
via IFTTT

Oct 26, 2016

[JEDS #papers ] Characterization of RF Noise in UTBB FD-SOI MOSFET https://t.co/LNlvvNOb5V https://t.co/XQsatKslTX


from Twitter https://twitter.com/wladek60

October 26, 2016 at 05:03PM
via IFTTT

[JEDS #papers ] Characterization of RF Noise in UTBB FD-SOI MOSFET https://t.co/LNlvvNOb5V


from Twitter https://twitter.com/wladek60

October 26, 2016 at 04:49PM
via IFTTT

Oct 25, 2016

Transistor Sizing for Bias-Stress Instability Compensation in Inkjet-Printed Organic C-Inverters https://t.co/91uJURy3KA #papers


from Twitter https://twitter.com/wladek60

October 25, 2016 at 09:07PM
via IFTTT

[ESSDERC Paper] Compact model for variability of low frequency noise due to number fluctuation effect

Compact model for variability of low frequency noise due to number fluctuation effect
N. Mavredakis and M. Bucher
2016 46th European Solid-State Device Research Conference (ESSDERC)
Lausanne, Switzerland, 2016, pp. 464-467

Abstract: Variability of low frequency noise (LFN) in MOSFETs is both geometry- and bias-dependent. RTS noise prevails in smaller devices where noise deviation is mostly area-dominated. As device dimensions increase, operating conditions determine noise variability maximizing it in weak inversion and increasing it with drain voltage. This dependence is shown to be directly related with fundamental carrier number fluctuation effect. A new bias- and area-dependent, physics-based, compact model for 1/f noise variability is proposed. The model exploits the log-normal behavior of LFN. The model is shown to give consistent results for average noise, variance, and standard deviation, covering bias-dependence and scaling over a large range of geometry.

Keywords: compact models, Low-frequency noise, MOSFET, Reactive power, Semiconductor device modeling, Shape, Standards, MOSFET, low frequency noise, noise variability

URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7599686&isnumber=7598672