Showing posts with label Failure mechanisms. Show all posts
Showing posts with label Failure mechanisms. Show all posts

Oct 13, 2021

[paper] MEMS Sensors Reliability

M. Hommela, H. Knaba, S. Galal Yousefb
Reliability of automotive and consumer MEMS sensors - An overview
Microelectronics Reliability (114252) online Oct. 11, 2021
DOI: 10.1016/j.microrel.2021.114252

a Robert-Bosch-GmbH, Automotive Electronics, Tübinger Str. 123, 72762 Reutlingen, Germany
b Bosch Sensortec GmbH, Gerhard-Kindler-Str. 9, 72770 Reutlingen, Germany


Abstract: In our daily life, sensors play more and a more important role. They take over many functions in the automotive world as well as in consumer products with an increasing dissemination of the internet of things. In addition, they offer a broad variety of new applications. Sensors are typically build up in a package including a sensing element (e.g. micromechanical structures in acceleration sensors or membranes in gas sensors, etc.) and a microelectronic chip to evaluate the sensor data. This article will give an overview, how the reliability of such a system is validated. The challenges for reliability in terms of requirements and qualification for automotive and consumer applications will be discussed. The complex structure of a sensor module in combination with a broad variety of materials implies many possible failure mechanisms, which have to be considered. Some relevant sensor failure mechanisms caused by mechanical shock, thermo-mechanical stress and the influence of humidity on sensor reliability will be shown. The challenges for describing the influence of humidity on the sensor lifetime by an acceleration model will be discussed in detail. Finally, the paper will give an outlook for the reliability challenges of future sensor applications.
Fig: Loads on a MEMS sensor module.