Jul 22, 2020

[paper] Compact Model of All-Optical-Switching Magnetic Elements

J. Pelloux-Prayer1 and F. Moradi1
Compact Model of All-Optical-Switching Magnetic Elements
IEEE TED, vol. 67, no. 7, pp. 2960-2965, July 2020
DOI: 10.1109/TED.2020.2991330.
1Department of Engineering, Aarhus University, 8200 Aarhus, Denmark

Abstract: We present, for the first time, a Verilog-A compact model for an all-optically switchable magnetic tunnel junction (MTJ) using results of all-optical-switching (AOS) simulations. Our model is compatible with electronics and photonics design automation tools, and was tested using Cadence Specter and Virtuoso. This compact model can be used to design circuits and systems combining MTJs, photonic circuits, and electronic circuits giving the possibility to researchers working within this field to develop novel circuits and systems.
Fig: Equivalent circuit of the AOS model with LLGS module and LUT module.

Aknowledgement: This work was supported by the European Union’s Horizon 2020 Research and Innovation Programme under Grant 713481.

[paper] LF Noise Characterization of Ge n-Channel FinFETs

Alberto V. de Oliveira (Member, IEEE), Duan Xie (Member, IEEE), Hiroaki Arimura, Guillaume Boccardi, Nadine Collaert, Cor Claeys (Fellow, IEEE), Naoto Horiguchi (Member, IEEE)
and Eddy Simoen (Senior Member, IEEE_
Low-Frequency Noise Characterization of Germanium n-Channel FinFETs
IEEE Transactions on Electron Devices, vol. 67, no. 7, pp. 2872-2877, July 2020
DOI: 10.1109/TED.2020.2990714

Abstract: This article presents an experimental, room temperature, low-frequency noise characterization of germanium n-channel fin-field-effect transistors (finFETs) integrated on silicon. After determining the dominant mechanism in the noise spectrum, the main parameters associated with the noise mechanism are extracted and evaluated as a function of fin width from a planar-like (100 nm) up to narrow fin (20 nm) for 1-µm length devices. The main findings are that the 1/f noise plays an important role in the Ge n-finFETs, whereby the trap density profiles in the gate-stack are quite uniform and have a lower level than in n-/p-channel Ge planar MOSFETs. In addition, a generation-recombination (GR) component was found in 160-nm-length devices, which is caused by GR centers located in the depletion region.

Fig: (a) Schematic of the Ge  n-finFET structure 
and (b) gate-stack composition

Fig: Drain current noise power spectral density as a function of frequency 
for a 160nm long Ge n-finFET

Acknowledgment: The authors would like to thank the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) and the Logic IIAP program for the support. This work has been performed in the frame of the imec Core Partner program on Ge devices.



[paper] Thyristor Conduction-Insulated Gate Bipolar Transistor

Mengxuan Jiang1 (Member, IEEE) and Longjiang Gao1
Simulation Study of a Thyristor Conduction-Insulated Gate Bipolar Transistor (TC-IGBT) 
with a p-n-p Base and an n-p-n Collector for Reducing Turn-Off Loss," 
IEEE TED, vol. 67, no. 7, pp. 2854-2858, July 2020
DOI: 10.1109/TED.2020.2995343
1School of Electrical Engineering, Chongqing University, Chongqing 400044, China

Abstract: This article proposes a thyristor conduction-insulated gate bipolar transistor (TC-IGBT) with a p-n-p base and an n-p-n collector to reduce turn-off loss. The parasitic p-collector/n-drift/floating p (FP)-layer/carrier stored (CS)-layer thyristor is activated by the double channel gate and the p-n-p base acts a hole barrier to increase hole concentration at the top side. The n-p-n collector is used for extracting electrons from the n-drift region to decrease hole concentration at the bottom side. Therefore, these two effects form linear and descending hole concentration distribution profile. As a result, the p-n-p base and the n-p-n collector in the TC-IGBT offers lower turn-off loss and turn-off fall time. TCAD numerical simulations show reductions up to 47% (3.15 mJ) and 52% (34 ns) in turn-off loss and turn-off fall time, respectively, when compared to a field stop (FS) IGBT with similar breakdown voltage, threshold voltage, and short circuit time. Therefore, this designed structure may be attractive for power electronics applications.
Fig: (a) Proposed TC-IGBT and (b) its equivalent circuit model

Acknowledgment: This work was supported in part by the National Natural Science Foundation of China under Grant 51707025 and in part by the Chinese Universities Scientific Fund under Grant 106112017 CDJXY150099.

[paper] Unified Analytical Model for SOI LDMOS

Baoxing Duan, Jingyu Xing, Ziming Dong and Yintang Yang1 (Senior Member, IEEE)
Unified Analytical Model for SOI LDMOS With Electric Field Modulation
IEEE J-EDS, vol. 8, pp. 686-694, 2020
DOI: 10.1109/JEDS.2020.3006293

1Key Laboratory of the Ministry of Education for Wide Band-Gap Semiconductor Materials and Devices, School of Microelectronics, Xidian University, Xi’an 710071, China

Abstract: The unified analytical model is proposed for SOI LDMOS (Silicon On Insulator Lateral Double-diffused Metal Oxide Semiconductor) based on the electric field modulation in this paper for the first time. The analytical solutions of the surface electric field distributions and potential distributions are derived on the basis of the 2-D Poisson equation. The variation of the buried layer parameters modulates the surface electric field by the electric field modulation effect to optimize the surface electric field distribution of the device. Also, the simulation results obtained through the simulation software ISE are consistent with the expected results of the analytical model. This not only proves the feasibility of the electric field modulation theory, but also shows that the accurate analytical model will be of great guiding significance for designing and optimizing the same LDMOS based on SOI structures.
FIG: Cross-sectional view of electric field modulated SOI LDMOS

Acknowledgment: This work was supported in part by Science Foundation for Distinguished Young Scholars of Shaanxi Province under Grant 2018JC-017, and in part by the 111 Project under Grant B12026.

Fwd: IEEE-EDS SCV/SF Chapter July Distinguished Lecture (Webex only)

Dear IEEE EDS members in Santa Clara Valley/San Francisco Chapter

Please note that this seminar is now WEBEX participation only. 

Differentiated Fully Depleted SOI (FDSOI) Technology for Highly Efficient and Integrated mmWave Wireless Connectivity Solution

Speaker: Dr. Anirban Bandyopadhyay, Director, Strategic Marketing and Business Analytics, GLOBALFOUNDRIES, Inc., Santa Clara, CA

Friday, July 24, 2020 at 12PM – 1PM PDT

Abstract:
The emergence of enhanced mobile broadband (eMBB) connectivity based on mmWave 5G and the emerging prospect of broadband internet to using non-terrestrial mmwave backhaul using low earth orbit (LEO) satellite generated huge interest in the entire telecommunication ecosystem. While mmwave allows huge bandwidth of channels to enable enhanced broadband, it also poses a lot of technical challenges in terms of coverage, generating enough transmitted power efficiently particularly in the uplink, system cost & scaling and long term reliability of the hardware system particularly for infrastructure including Satellite born systems. Current talk will focus on how Silicon technologies based on differentiated fully depleted SOI (FDSOI) can address the above challenges by enabling a highly efficient and integrated radio without compromising on the mmWave performance and reliability. Talk will highlight the technology Figures of Merits (FOMs) for a mmwave phased array system and how a differentiated FDSOI technology platform compares with other silicon technologies in terms of devices and circuits.

Speaker Bio:
Dr. Anirban Bandyopadhyay is the Director, Strategic Marketing and Business Analytics within the Mobility & Wireless Infrastructure Business Unit of GLOBALFOUNDRIES, USA. His work is currently focused on hardware architecture & technology evaluations for emerging RF and mmWave applications. Prior to joining GLOBALFOUNDRIES, he was with IBM Microelectronics, New York and with Intel, California where he worked on different areas like RF Design Enablement, Silicon Photonics, signal integrity in RF & Mixed signal SOC's. Dr. Bandyopadhyay did his PhD in Electrical Engineering from Tata Institute of Fundamental Research, India and Post-Doctoral research at Nortel, Canada and at Oregon State University, USA. He represents Global Foundries in different industry consortia on RF/mmWave applications and is a Distinguished Lecturer of IEEE Electron Devices Society.

More information at the IEEE EDS Santa Clara Valley-San Francisco Chapter Home Page

Subscribe or Invite your friends to sign up for our mailing list and get to hear about exciting electron-device relevant talks. We promise no spam and try to minimize email. You can unsubscribe easily.

To unsubscribe from the EDS-CHAP-SCV list, click the following link: https://listserv.ieee.org/cgi-bin/wa?SUBED1=EDS-CHAP-SCV&A=1