Jun 10, 2011

Freescale's Su calls for improved EDA tools

Freescale's Su calls for improved EDA tools:

As more embedded devices are being connected to the "Internet of things" the design methodologies used in IC designs need to change accordingly for faster chip turnarounds.

Lisa Su, VP and general manager of FreescaleLisa Su, VP and general manager of Freescale"Some 7 billion devices will be connected to the Internet in this era from 2006 to 2020," said Lisa Su, vice president and general manager of Freescale Semiconductor Inc's networking and multimedia group. "And mobile traffic is doubling every year through 2015."

Su delivered the Tuesday (June 7) keynote here at the Design Automation Conference, whose organizers have placed embedded systems and software squarely in the apex of DAC with dedicated exhibit areas on the show floor.

While only 15 exhibitors specifically identified themselves as embedded hardware/software providers out of a total of 200, the technical program was loaded with embedded presentations and Su's keynote was clearly aimed at showing that at least Freescale understands that it is operating in a new space for them, the embedded world.

"The embedded era is defined by standards-based hardware and software, is open source, and aimed numerous markets, including health, safety, energy, transportation, communications, entertainment, automation, and, of course, cloud computing," said Su.

Su quoted statistics that the monthly mobile traffic will increase tenfold from today's 0.6 exabytes to 6.3 exabytes by 2015. "The resultant heterogeneous networks, together with the increasing needs of the ‘connected' car, offer many opportunities to semiconductor companies like us," said Su.

The many-core paradigm of the expected SOC technology transition poses a few challenges, according to Su.

Among these are scalability as the number of cores per processor generation will double. Also there will be system tradeoffs to consider between cores versus using hardware acceleration, as well cluster optimization among cores, caches, local vs. global resource sharing. And an increasing amount of high-speed mixed-signal I/O will place strain on expected quality of service metrics.

read more...

Jun 8, 2011

Postdoc Position in Thin Films (Thun, CH)

Empa is the interdisciplinary research and services institution for material sciences and technology development of the ETH Domain. Laboratory for Mechanics of Materials and Nanostructures at Empa's location in Thun, CH, is offering an Academia / Industry Postdoc Position in Thin Films

Submit your application online and upload all documents through this webpage by June 30, 2011:
http://internet1.refline.ch/673276/0190/++publications++/1/index.html

Additional information can be obtained from the EMPA website and by contacting Dr. Johann Michler.

IEDM'2011 Abstract Submission Site is Now Open (Deadline: June 24, 2011)

IEDM Abstract Submission Site is Now Open - Abstract Submission
Deadline:   June 24, 2011

2011 IEEE International Electron Devices Meeting
The Annual Technical Meeting of the Electron Devices Society will be held at the
Washington Hilton, Washington, DC USA  - December 5-7, 2011

To view the IEDM Call for Papers and instructions for submitting an abstract to
the conference, visit:      http://www.ieee-iedm.org

IEEE International Electron Devices Meeting (IEDM) is the world’s pre-eminent
forum for reporting technological breakthroughs in the areas of semiconductor
and electronic device technology, design, manufacturing, physics, and modeling. 
IEDM is the flagship conference for nanometer-scale CMOS transistor technology,
advanced memory, displays, sensors, MEMS devices, novel quantum and nano-scale
devices and phenomenology, optoelectronics, devices for power and energy
harvesting, high-speed devices, as well as process technology and device
modeling and simulation.  

Starting this year (2011) there is an increased emphasis on circuit and device
interaction.  With ever increasing transistor count, nanometer design rules and
layout restrictions, circuit-device interaction is becoming critical to
providing viable technology solutions. This new emphasis includes
technology/circuit co-optimization, power/performance/area analyses, design for
manufacturing and process control, as well as CMOS platform technology and
scaling.

INCREASED PARTICIPATION IN THE FOLLOWING AREAS IS SOUGHT: 
 * Circuit-device interaction 
 * Energy harvesting
 * Biomedical devices
 * Power devices

Information about IEDM can be found at: http://www.ieee-iedm.org 
Twitter: http://twitter.com/ieee_iedm 
Facebook: http://www.facebook.com/pages/IEDM/131119756449 

MEETING HIGHLIGHTS 
 * New subcommittees (Circuit-Device Interaction and Nano Device Technology)
 * New for 2011:  90 Minute Tutorial Sessions on Emerging Topics, Saturday
afternoon, December 3
 * Three plenary presentations by prominent experts 
 * Invited papers on all aspects of advanced devices and technologies.
 * An Emerging Technology session. 
 * Two evening Panel discussions.
 * Presentation of IEEE/EDS awards. 
 * IEDM Luncheon presentation will be held on Tuesday, December 6.
 * Two short courses will be held on Sunday, December 4.

Further Information - All questions or inquiries for further information
regarding this meeting should be directed to the Conference Office at:

19803 Laurel Valley Place
Montgomery Village, MD 20886 USA
Tel: 301-527-0900, ext. 2
Email: iedm@his.com 
Local European Contact 

Stefan De Gendt, IMEC, Belgium
Local Asian Contact 
Norikatsu Takaura, LEAP, Japan
2011 Conference Chair 
Kazunari Ishimaru, Toshiba, Japan
Technical Program Chair 
Veena Misra, North Carolina State University, USA

If you know of any colleagues who may have a paper to contribute and have not
received this notice, please bring it to their attention.

Jun 3, 2011

Course on Statistical CMOS Variability and Reliability, San Jose CA, June 13th and 14th

Professor Asen Asenov, CEO of Gold Standard Simulations, will be delivering a comprehensive course (see the flyer) on variability and reliability issues and their impact on modern CMOS devices and design.

The course topics include, Variability classification,Sources of statistical variability, Simulation of statistical variability, Variability trends in conventional and novel MOSFETs, Random telegraph noise statistics, Statistical aspects of reliability, Statistical compact model strategies and Statistical circuit simulation. At this event there will also be a special lecture on Variability in FinFET devices.

For more information please visit: http://www.goldstandardsimulations.com/courses/ or get in touch with them at courses(at)goldstandardsimulations.com.

Jun 2, 2011

Papers in Solid-State Electronics Volume 62, Issue 1, (August 2011)

A computationally efficient compact model for fully-depleted SOI MOSFETs with independently-controlled front- and back-gates   Original Research Article

Pages 31-39
Darsen D. Lu, Mohan V. Dunga, Chung-Hsun Lin, Ali M. Niknejad, Chenming Hu

Research highlights

► A computationally efficient approximation for surface potential in FDSOI MOSFETs is developed. ► IV and CV models for FDSOI MOSFETs are derived without making the charge sheet approximation. ► The core model and non-ideal effect expressions are implemented in Verilog-A language. ► The model is symmetric with respect to Vds = 0 and continuous in all regions of operation.


 An effective thermal circuit model for electro-thermal simulation of SOI analog circuits   Original Research Article

Pages 48-61
Ming-C. Cheng, Kun Zhang

Highlights

► A thermal circuit model is developed for SOI analog circuits. ► The model integrates a device thermal circuit with interconnect thermal networks. ► The device thermal circuit accounts for non-isothermal effects in SOI devices. ► Thermal networks for cross-coupled and parallel coupled wires are developed. ► The model is coupled with BSIMSOI for electro-thermal simulation of SOI circuits.



MOSFET modeling for design of ultra-high performance infrared CMOS imagers working at cryogenic temperatures: Case of an analog/digital 0.18 μm CMOS process   Original Research Article

Pages 115-122
P. Martin, A.S. Royet, F. Guellec, G. Ghibaudo

Research highlights

► Specific physical effects are observed in a cooled (77–200 K) 0.18 μm CMOS process. ► These effects are described and modeled for design of cryogenic IR CMOS imagers. ► Data on low frequency noise and transistor matching in MOSFET are also presented.



 Physics-based compact model for ultra-scaled FinFETs   Original Research Article

Pages 165-173
Ashkhen Yesayan, Fabien Prégaldiny, Nicolas Chevillon, Christophe Lallement, Jean-Michel Sallese

Highlights

► We propose a physical and explicit compact model for lightly doped FinFETs. ► This design-oriented model is valid for a large range of silicon Fin widths/lengths. ► It describes well the drain current, small signal parameters and capacitances. ► It takes into account all short-channel effects and quantum mechanical effects. ► This compact model needs a very few number of electrical parameters (4).



Three-dimensional analytic modelling of front and back gate threshold voltages for small geometry fully depleted SOI MOSFET’s   Original Research Article

Pages 174-184
Krishna Meel, R. Gopal, Deepak Bhatnagar

Highlights

► New 3-D front (back) gate threshold voltage models of FD-SOI MOSFETs are reported. ► Models solve 3-D Poisson’s equation using Green’s function as a tool. ► 3-D threshold voltage models include side wall, source/drain and back gate effects. ► Front and back gate charge coupling is incorporated in both the threshold voltages. ► Compact models of threshold voltages are amenable to circuit CAD tool.



Mobility analysis of surface roughness scattering in FinFET devices   Original Research Article

Pages 195-201
Jae Woo Lee, Doyoung Jang, Mireille Mouis, Gyu Tae Kim, Thomas Chiarella, Thomas Hoffmann, Gérard Ghibaudo

Highlights

► Mobility analysis of the surface roughness scattering along the different interfaces of FinFET devices. ► The sidewall and top surface drain current components were estimated from the total drain currents of different fin width conditions. ► The contribution of the surface roughness scattering was analysed and that on sidewalls was about three times stronger than on top surface for n-channel FinFETs.