Showing posts with label heterogeneous integration. Show all posts
Showing posts with label heterogeneous integration. Show all posts

Apr 12, 2022

[paper] Roadmapping of Nanoelectronics for the New Electronics Industry

Paolo Gargini1,Francis Balestra2, and Yoshihiro Hayashi3
Roadmapping of Nanoelectronics for the New Electronics Industry
Appl. Sci. 2022, 12(1), 308
DOI: 10.3390/app12010308
Received: 4 November 2021 / Revised: 17 December 2021 
Accepted: 20 December 2021 / Published: 29 December 2021
Academic Editor: Gerard Ghibaudo; This article belongs to the Special Issue Advances in Microelectronic Materials, Processes and Devices
   
1IEEE IRDS, (US)
2 CNRS, Grenoble INP (F)
3 Keio University, Tokyo (J)


Abstract: This paper is dedicated to a review of the international effort to map the future of nanoelectronics from materials to systems for the new electronics industry. The following sections are highlighted: the Roadmap structure with the international teams, the methodology and historical evolution, the various eras of scaling, the new ecosystems and computer industry, the evolving supply chain, the development of SoC and SiP, the advent of the Internet of Everything and the 5G communications, the dramatic increase of data centers, the power challenge, the technology fusion, heterogeneous and system integration, the emerging technologies, devices and computing architectures, and the main challenges for future applications.
FIG: 40 Years of Microprocessor Trend Data

Nov 3, 2020

ASCENT project

Applications and Systems-driven Center for Energy-Efficient integrated Nano Technologies

The Mission of the ASCENT Center is to transcend the current limitations of high-performance transistors confined to a single planar layer of integrated circuit by pioneering vertical monolithic integration of multiple interleaved layers of logic and memory, by demonstrating beyond-CMOS device concepts that combine processing and memory functions, heterogeneously integrating functionally diverse nano-components into integrated microsystems and by demonstrating in-memory compute kernels to accelerate future data-intensive at-scale cognitive workloads.

Researchers at ASCENT pursue four areas of technology including three-dimensional integration of device technologies beyond a single planar layer (vertical CMOS); spin-based device concepts that combine processing and memory functions (beyond CMOS); heterogeneous integration of functionally diverse nano-components into integrated microsystems (heterogeneous integration fabric); and hardware accelerators for data intensive cognitive workloads (merged logic-memory fabric).

ASCENT is one of six research centers funded by the SRC’s Joint University Microelectronics Program (JUMP), which represents a consortium of industrial participants and the Defense Advanced Research Projects Agency (DARPA). Information about the SRC can be found at https://www.src.org/.

Src Jump Logo

ASCENT is a collaboration of the following Universities:

Logo Cornell

Logo Georgia Tech
Logo ND

Logo Purdue

Logo Stanford

Logo Colorado
Logo Minnesota

Logo Berkeley

Logo UC San Diego

Logo UC Santa Barbara

Logo UCLA Logo UT Dallas

Logo Wayne Logo Illinois Institute