Tuesday, January 21, 2014

Compact DC Modeling of Organic Field-Effect Transistors: Review and Perspectives

In spite of impressive improvements achieved for organic field-effect transistors (OFETs), there is still a lack of theoretical understanding of their behaviors. Furthermore, it is challenging to develop a universal model that would cover a huge variety of materials and device structures available for state-of-the-art OFETs. Nonetheless, currently there is a strong need for specific OFET compact models when device-to-system integration is an important issue. We briefly describe the most fundamental characters of organic semiconductors and OFETs, which set the bottom line dictating the requirement of an original model different from that of conventional inorganic devices. Along with an introduction to the principles of compact modeling for circuit simulation, a comparative analysis of the reported models is presented with an emphasis on their primary assumptions and applicability aspects. Critical points for advancing OFET compact models are discussed in consideration of the recent understanding of device physics.

[1] Kim, C.-H.; Bonnassieux, Y.; Horowitz, G., "Compact DC Modeling of Organic Field-Effect Transistors: Review and Perspectives," Electron Devices, IEEE Transactions on , vol.61, no.2, pp.278,287, Feb. 2014
doi: 10.1109/TED.2013.2281054

No comments: