Oct 8, 2020

[paper] X-Parameters Based Characterization and Compact Modeling of SiGe HBT Linearity



from Twitter https://twitter.com/wladek60

October 08, 2020 at 05:22PM
via IFTTT

Special IJHSES Issue on Advancements in Smart Grid Technologies

0 cover

Call for Papers


Special Issue on Advancements in Smart Grid Technologies

This special issue is on electrical power generation, transmission, distribution and utilization in smart grid, from the viewpoints of individual power system elements and their integration, interaction and technological advancement.

The special issue focuses on microelectronic systems, circuits, power control and soft computing techniques in smart grid. It includes, but are not limited to, the following:

  • Renewable & Sustainable Energy Technologies
  • Cloud-assisted smart grid architectures and development
  • Internet-centric smart grid solutions
  • Case studies on recent advances in smart grid and renewable energy system
  • Information and communication technology for enhancing smart grid and renewable energy system
  • Future of renewable energy sources in environmental protection
  • Sustainable computational methods to evaluate the optimization of renewable energy systems
  • Networking and data mining in smart grids for continuous sustainable development
  • Threat, challenges & opportunity of integrating smart grid and renewable energy system
  • Generation techniques ranging from advances in conventional electromechanical methods, through nuclear power generation, to renewable energy generation.
  • A study on the smart grid and renewable energy system for reducing the complexity of power grids
  • Distribution techniques, equipment development, and smart grids.
  • Renewable power generation and clean energy technologies
  • Distributed energy resources and storage
  • Modern power grid devices, sensors and wireless technologies
Paper Submission and Review Schedule:
  • First announcement: October. 12th 2020
  • Submission Deadline: November30th 2020
  • Final notification: January 10, 2020
  • Publication Date: June 30th 2020

Camera ready articles should be sent to the Guest Editor for consideration. Please specify the research topic on the cover page.

IJHSES Editor-in-Chiefs:
Michael Shur, Rensselaer Polytechnic Institute (USA)
Wladek Grabinski, MOS-AK (EU)

Guest Editor:
Naresh Kumar YadavD.C.R.U.S.T, Murthal (India)

Oct 7, 2020

[paper] Flexible MO TFT for Analog Applications

Giuseppe Cantarella1, Júlio Costa2, Tilo Meister3, Koichi Ishida3, Corrado Carta3, Frank Ellinger3, Paolo Lugli1, Niko Münzenrieder1,2 and Luisa Petti1
Review of recent trends in flexible metal oxide thin-film transistors for analog applications
Flexible and Printed Electronics 2020, Vol. 5, No. 3
DOI: 10.1088/2058-8585/aba79a

1Faculty of Science and Technology, Free University of Bozen-Bolzano, 39100, Bozen, Italy
2Flexible Electronics Laboratory, University of Sussex, Brighton, BN1 9QT, United Kingdom
3Chair of Circuit Design and Network Theory, TU Dresden, 01069 Dresden, Germany

Abstract: Thanks to the extraordinary advances flexible electronics have experienced over the last decades, applications such as conformable active-matrix displays, ubiquitously integrated disposable flexible sensor nodes, wearable or textile-integrated systems, as well as imperceptible and transient implants are now reachable. To enable these applications, specialized analog circuits able to transmit and receive data, condition sensors' parameters, drive actuators or control powering devices are required. High-performance sensor conditioning, driving and transceiver circuits on a wide range of flexible substrates are therefore extremely important to develop. However, the currently available materials and processes compatible with mechanically flexible substrates impose massive limitations in terms of large-area uniformity, device dimensions' shrinkability and circuit design, challenging the realization of flexible analog systems. Among state-of-the-art technologies employing low-temperature fabrication processes, thin-film transistors (TFTs) based on metal oxide semiconductors represent the potentially best compromise in terms of prize, performance, technology maturity and capacity to realize complex systems. This is why metal oxide TFTs are nowadays widely used for flexible, light-weight, transparent, stretchable and bio-degradable analog circuits and systems. Here, we review the current trends of flexible metal oxide TFTs for analog applications. First, an introduction is given, where current challenges and requirements related to the realization of flexible analog circuits and systems are analysed. Additionally, TFT performance parameters and configurations are briefly revised. Then, the recent advances in the field of flexible metal oxide TFTs for analog applications are summarized. In particular, all reported approaches to reduce the channel length and improve the AC performance are shown. Next, the current state of flexible metal oxide TFT-based analog circuits is shown, discussing n-type only and complementary circuit configurations. The last topic of the review covers systems based on flexible metal oxide analog circuits. Finally, a conclusion is drawn and an outlook over the field is provided.

Figure: Overview of published works on flexible metal oxide TFT based circuits, indicating the minimum channel length of the devices, the operation frequency of the circuits, the effective supply voltage used, as well as the total TFT count. Only integrated circuits are included.

Acknowledgments: This work was partially supported by the DFG FFlexCom Priority Programme, Germany, through projects WISDOM II and Coordination Funds, under Grants 271795180 and 270774198. This work was also partially funded with internal funding of the Faculty of Science and Technology of the Free University of Bolzano-Bozen (project ”EYRE” RTD Call 2019).

[paper] Parameter Extraction in JFETs

Nikolaos Makris1, Matthias Bucher1, Member, IEEE, Loukas Chevas1, Farzan Jazaeri2
and Jean-Michel Sallese2
Free Carrier Mobility, Series Resistance, and Threshold Voltage Extraction
in Junction FETs
in IEEE Transactions on Electron Devices, 
Special Section on ESSDERC/ESSCIRC 2020
DOI: 10.1109/TED.2020.3025841.

1School of Electrical and Computer Engineering, TU Crete (GR)
2Ecole Polytechnique Fédérale de Lausanne, EPFL (CH)

Abstract: In this brief, extraction methods are proposed for determining the essential parameters of double gate junction field-effect transistors (FETs). First, a novel method for determining free carrier effective mobility, similar to a recently proposed method for MOSFETs, is developed. The same method is then extended to cover also the case when series resistance is present, while series resistance itself may be determined from the measurement from two FETs with different channel lengths. The key technological and design parameter is the threshold voltage, which may be unambiguously determined from the transconductance-to-current ratio with a constant-current method. The new methods are shown to be effective over a wide range of technical parameters, using technology computer-aided design simulations.

Fig: Extraction of carrier mobility for DG JFETs in linear region at 300K 
a) corresponding output conductance gds and constituents ∂gds/∂Vds and 2Qsc,d/b, and 
b) extracted mobility for long- and moderate-length devices close agreement with the constant, nonfield-dependent mobility (μ = 826 cm2/Vs) used in the TCAD simulations.

Aknowlegement: This work was supported in part by the INNOVATION-EL-Crete Project under Grant MIS 5002772. 



Oct 6, 2020

[paper] Compact Modeling in MFIS Negative-Capacitance FETs

N. Pandey and Y. S. Chauhan
Analytical Modeling of Short-Channel Effects in MFIS Negative-Capacitance FET
Including Quantum Confinement Effects
in IEEE TED (Early Access), DOI: 10.1109/TED.2020.3022002.

Abstract: An analytical 2-D model of double-gate metal-ferroelectric-insulator-semiconductor-negative-capacitance FET (MFIS-NCFET), using Green's function approach, in the subthreshold region, is presented in this article. The explicit solution of coupled 2-D Landau-Devonshire and Poisson equations is analytically derived. Subsequently, an analytical and explicit model of subthreshold slope is developed from potential functions. The developed model includes quantum-mechanical effects, which considers not only geometrical confinements but also electrical confinements. The analytical solution of a 2-D nonhomogeneous Poisson equation coupled with the 1-D Schrödinger equation is used to obtain the potential function in the channel. The impact of the ferroelectric thickness (tfe) on quantum confinement is also studied. We find that larger tfe reduces the quantum confinement effect. Therefore, as tfe increases, threshold voltage roll-off with the variation in Si-body thickness decreases.
Fig: Schematic of DG MFIS-NCFET.

Aknowegement: This work was supported in part by the Swarna Jayanti Fellowship under Grant DST/SJF/ETA-02/2017-18 and in part by the FIST Scheme of the Department of Science and Tech- nology under Grant SR/FST/ETII-072/2016.