Oct 3, 2019

[paper] Prediction of DC-AC Converter Efficiency Degradation

Kenshiro Sato, Dondee Navarro, Shinya Sekizaki, Yoshifumi Zoka, Naoto Yorino,
Hans Jürgen Mattausch, Mitiko Miura-Mattausch, 
Prediction of DC-AC Converter Efficiency Degradation due to Device Aging
Using a Compact MOSFET-Aging Model
IEICE Transactions on Electronics
論文ID 2019ECP5010, [早期公開] 公開日 2019/09/02

Online ISSN 1745-1353, Print ISSN 0916-8524, https://doi.org/10.1587/transele.2019ECP5010,
https://www.jstage.jst.go.jp/article/transele/advpub/0/advpub_2019ECP5010/_article/-char/ja,

Abstract: The degradation of a SiC-MOSFET-based DC-AC converter-circuit efficiency due to aging of the electrically active devices is investigated. The newly developed compact aging model HiSIM_HSiC for high-voltage SiC-MOSFETs is used in the investigation. The model considers explicitly the carrier-trap-density increase in the solution of the Poisson equation. Measured converter characteristics during a 3-phase line-to-ground (3LG) fault is correctly reproduced by the model. It is verified that the MOSFETs experience additional stress due to the high biases occurring during the fault event, which translates to severe MOSFET aging. Simulation results predict a 0.5% reduction of converter efficiency due to a single 70ms-3LG, which is equivalent to a year of operation under normal conditions, where no additional stress is applied. With the developed compact model, prediction of the efficiency degradation of the converter circuit under prolonged stress, for which measurements are difficult to obtain and typically not available, is also feasible.

Oct 2, 2019

Ph D scholarship about semiconductor device modeling in Tarragona (Spain)

We want to get one scholarship for a Ph D student position in the Department of Electronic Engineering in the Department of Electronic Engineering in the Universitat Rovira i Virgili (URV), in Tarragona , Spain. The subject of the Ph D would be o the development of new techniques of characterization and modeling of nanoscale semiconductor devices, in particular two-dimensional semiconductor devices, (which are one of the most promising device structures for downscaling to 1nm), in particular transistors or memristors. It will be related to funding research projects in which the hosting group participates.

The duration of the grant will be 3 years.

The candidate should have a  Master degree in Electrical Engineering, Electronic Engineering, Telecommunication Engineering or Physics, obtained between January 1 2020 and October  2022. A good background in Semiconductor Physics, Semiconductor Devices, or Integrated Circuit Design will be highly appreciated.

Applicants must send to my e-mail address (benjamin.iniguez@urv.cat), and by November 9 2022, a CV together witha copy of the academic certificates indicating the grades obtained for all subjects during their studies (both Bachelor Degree and Master Degree).

Tarragona is a medium city (100000 inhabitants) with a pleasant Mediterranean climate and many recreation opportunities (nice beaches, theme parks, nature preserves, mountain hiking, touristic resorts and facilities). It is located 100 km Southwest of Barcelona, and it is very well connected by train, bus, highways and even low cost flights from its own airport.

My research group in the Department of Electronic Engineering, Universitat Rovira i Virgili (URV) is one of the strongest groups in compact modeling in Europe. We have led or are leading several national and European projects targeting semiconductor device characterization, physics and modeling.