Showing posts with label bipolar transistor. Show all posts
Showing posts with label bipolar transistor. Show all posts

Oct 25, 2023

[paper] Sub-THz HICUM for SiGe HBTs

Soumya Ranjan Panda, Thomas Zimmer, Anjan Chakravorty, Nicolas Derrier
and Sebastien Fregonese
Exploring Compact Modeling of SiGe HBTs in Sub-THz Range With HICUM
in IEEE TED, DOI: 10.1109/TED.2023.3321017.

IMS laboratory, CNRS, University of Bordeaux (F)
Department of Electrical Engineering, IIT Madras (IN)
STMicroelectronics, 38920 Crolles (F)


Abstract : This study delves deeper into the high frequency (HF) behavior of state-of-the-art sub-THz silicon germanium heterojunction bipolar transistors (SiGe HBTs) fabricated with 55 nm BiCMOS process technology from STM. Using measurement data, calibrated TCAD simulations, and compact model simulations, we present a comprehensive methodology for extracting several HF parameters (related to parasitic capacitance partitioning and nonquasi-static effects) of the industry standard model, HICUM. The parameter extraction strategies involve thorough physics-based investigation and sensitivity analysis. The latter allowed us to precisely evaluate the effects of parameter variations on frequency dependent characteristics. The accuracy of the finally deployed model is tested by comparing the model simulation with measured small-signal two-port parameters of SiGe HBTs up to 330 GHz.
FIG: a.)  TEM image of the SiGe HBT device; b.) 2D TCAD structure simulation; c.) Large signal equivalent circuit of HICUM L2 compact model; d.) and e.) adjunct networks for vertical NQS effects

Acknowledgment: The authors would like to acknowledge Dider Celi, STM, for valuable discussion about the compact modeling of heterojunction bipolar transistors (HBTs), and they also like to thank STM for providing the silicon wafers. This work was supported by NANO2022 Important Project of Common European Interest Project (IPCEI), and SHIFT Grant ID 101096256.