Tuesday, October 31, 2017

[paper] Review of physics-based compact models for emerging nonvolatile memories

Nuo Xu1, Pai-Yu Chen2, Jing Wang1, Woosung Choi1, Keun-Ho Lee3, Eun Seung Jung3, Shimeng Yu2
Review of physics-based compact models for emerging nonvolatile memories
1Device Lab, Samsung Semiconductor Inc., San Jose, CA 95134, USA
2School of ECEE, Arizona State University, Tempe, AZ 85281, USA
3Semiconductor R&D Center, Samsung Electronics, Hwasung-si, Gyeonggi-do, Korea
Journal of Computational Electronics, 2017, pp. 1-13
https://doi.org/10.1007/s10825-017-1098-0

Abstract: A generic compact modeling methodology for emerging nonvolatile memories is proposed by coupling comprehensive physical equations from multiple domains (e.g., electrical, thermal, magnetic, phase transitions). This concept has been applied to three most promising emerging memory candidates: PCM, STT-MRAM, and RRAM to study their device physics as well as to evaluate their circuit-level performance. The models’ good predictability to experiments and their effectiveness in large-scale circuit simulation suggest their unique role in emerging memory research and development [read more...]

https://doi.org/10.1007/s10825-017-1098-0

No comments: