Aug 14, 2017

[paper] Compact Electro-Mechanical-Fluidic Model for Actuated Fluid Flow System

Compact Electro-Mechanical-Fluidic Model for Actuated Fluid Flow System
T. K. Maiti, Member, IEEE, L. Chen, H. Zenitani, H. Miyamoto, Member, IEEE,
M. Miura-Mattausch, Fellow, IEEE, and H. J. Mattausch, Senior Member, IEEE
in IEEE Journal on Multiscale and Multiphysics Computational Techniques, 
vol. 2, no. , pp. 124-133, 2017.
doi: 10.1109/JMMCT.2017.2731878

Abstract: This paper presents a compact electro-mechanical-fluidic system-modeling method for multidomain system simulation based on multidomain physics that considers the total energy conservation condition, in terms of respective potential and flow quantities. Models for electrical, mechanical, and fluidic domains are developed to design the example of a blood pumping system, where the blood flow is driven by electrically controlled organic actuators. The electrical domain includes an organic mosfet-based control circuit, the mechanical domain includes organic actuators, and the fluidic domain includes a flexible fluid-flow channel. Control circuit, actuators, and fluid models are coupled through equivalent circuits, where interconnection relationships between two neighboring domains are expressed using the energy conservation concept. The model accuracy is verified with finite element method (FEM) based numerical simulation. Significantly faster simulation speed than with FEM and good accuracy were achieved [read more...]

TABLE: CORRESPONDING FORCE AND FLOW EQUATIONS FOR ELECTRICAL AND
MECHANICAL DOMAINS ARE SUMMARIZED [21]-[23]


[21] S. D. Senturia, Microsystems Design. Norwell, MA: Kluwer Academic Publisher, 2001.
[22] T. K. Maiti, L. Chen, H. Miyamoto, M. Miura-Mattausch, and H. J. Mattausch, “Modeling of electrostatically actuated fluid flow system for mixed-domain simulation,” in 20th Int. Conf. on Simulation of Semiconductor Processes and Devices (SISPAD), pp. 190-193, Sept. 2015, USA.
[23] T. K. Maiti, L. Chen, H. Miyamoto, M. Miura-Mattausch, and H. J. Mattausch, “Mixed domain compact modeling framework for fluid flow driven by electrostatic organic actuators,” in 45th European Solid-State Device Research Conference (ESSDERC), pp. 52-55, Sept. 2015, Austria. 

No comments: