Sep 28, 2020

#EPFL President M. Vetterli Takes On #Gender #Equality, COVID-19, and #Science Policy



from Twitter https://twitter.com/wladek60

September 28, 2020 at 04:47PM
via IFTTT

What is #FOSS? What is #OpenSource?



from Twitter https://twitter.com/wladek60

September 28, 2020 at 09:23AM
via IFTTT

Sep 25, 2020

ASCENT+ project



from Twitter https://twitter.com/wladek60

September 25, 2020 at 02:12PM
via IFTTT

#Opensource chip tech #RISC-V


from Twitter https://twitter.com/wladek60

September 25, 2020 at 09:46AM
via IFTTT

Sep 24, 2020

[paper] Ultra-High Voltage SiC IGBT

Wide-Range Prediction of Ultra-High Voltage SiC IGBT Static Performance
Using Calibrated TCAD Model
Daniel Johannesson1,2, Keijo Jacobs1, Staffan Norrga1, Anders Hallén3
Muhammad Nawaz2 and Hans-Peter Nee1,2
Materials Science Forum Submitted: 2019-09-19
ISSN: 1662-9752, Vol. 1004, pp 911-916  
DOI:10.4028/www.scientific.net/MSF.1004.911

1Division of Electric Power and Energy Systems, KTH , Sweden
2ABB Corporate Research, Västerås, Sweden
3Division of Electronics, KTH, Sweden

Abstract: In this paper, a technology computer-aided design (TCAD) model of a silicon carbide (SiC) insulated-gate bipolar transistor (IGBT) has been calibrated against previously reported experimental data. The calibrated TCAD model has been used to predict the static performance of theoretical SiC IGBTs with ultra-high blocking voltage capabilities in the range of 20-50 kV. The simulation results of transfer characteristics, IC-VGE, forward characteristics, IC-VCE, and blocking voltage characteristics are studied. The threshold voltage is approximately 5 V, and the forward voltage drop is ranging from VF = 4.2-10.0 V at IC = 20 A, using a charge carrier lifetime of τA = 20 μs. Furthermore, the forward voltage drop impact for different process dependent parameters (i.e., carrier lifetimes, mobility/scattering and trap related defects) and junction temperature are investigated in a parametric sensitivity analysis. The wide-range simulation results may be used as an input to facilitate high power converter design and evaluation. In this case, the TCAD simulated static characteristics of SiC IGBTs is compared to silicon (Si) IGBTs in a modular multilevel converter in a general highpower application. The results indicate several benefits and lower conduction energy losses using ultra-high voltage SiC IGBTs compared to Si IGBTs.


Fig: 4H-SiC IGBT structure implemented in 2D TCAD simulator

Acknowledgment This work was funded through SweGRIDS, by the Swedish Energy Agency and ABB.