Silicon transistors (STs) have been the workhorse of the electronics industry ever since its inception. Although STs historically have been used primarily in digital and low-frequency analog applications, they increasingly are being adopted for high-frequency analog purposes as well. This trend is fueled by the introduction of new fabrication methods, novel materials, and transistor architectures that permit aggressive downscaling into the nanometer regime. Along these lines, considerable attention currently is being devoted to the FinFET, which is an innovative multiple-gate field effect transistor offering the important advantage of being compatible with conventional planar CMOS technology.
Modeling and simulation are indispensable in the development of high-frequency STs. Indeed, ST models and simulations provide indispensable feedback for improving device fabrication processes and serve as a valuable tool for optimizing circuit designs. Unfortunately, the predictive power of modeling and simulation techniques for STs for digital and low-frequency applications oftentimes diminishes when applied to high-frequency analog STs. For modeling and simulation methods to drive the development of high-frequency ST technology, they must adapt as well.
The purpose of this Special Issue is to publish high-quality contributions addressing the modeling and simulation of high-frequency STs. A wide range of topics will be covered, ranging from bipolar to ?eld effect transistors and from linear to noise and non-linear models. Although the main focus of the Special Issue will be the extraction of high-frequency models, papers addressing other aspects of ST modeling will be considered as well. This issue will contain both invited and contributed papers. Manuscripts for this Special Issue should adhere to the requirements for regular papers of the IJNM as specified in the Author Guidelines at http://onlinelibrary.wiley.com/journal/10.1002/ (ISSN)1099-1204/homepage/ForAuthors.html.
Potential contributors may contact the Guest Editors to determine the suitability of their contribution to the Special Issue. All manuscripts should be submitted via the IJNM’s manuscript website http://mc.manuscriptcentral.com/ijnm, with a statement that they are intended for this Special Issue.
Guest Editors:
Manuscript submission deadline:
April 30, 2013