Proceedings of 43rd Annual Conference of the IEEE Industrial Electronics Society
IECON 2017
Lorenzo Ceccarelli, Paula Diaz Reigosa, Amir Sajjad Bahman, Francesco Iannuzzo,
Frede Blaabjerg
Center of Reliable Power Electronics, Department of Energy Technology Aalborg University,
Pontoppidanstræde 101
9220 Aalborg, Denmark
ABSTRACT: A novel physics-based, electro-thermal model which is capable of estimating accurately the short-circuit behavior and thermal instabilities of silicon carbide MOSFET multi-chip power modules is proposed in this paper. The model has been implemented in PSpice and describes the internal structure of the module, including stray elements in the multi-chip layout, self-heating effect, drain leakage current and threshold voltage mismatch. A lumped-parameter thermal network is extracted in order to estimate the internal temperature of the chips. The case study is a half-bridge power module from CREE with 1.2 kV breakdown voltage and about 300 A rated current. The short-circuit behavior of the module is investigated experimentally through a non-destructive test setup and the model is validated. The estimation of overcurrent and temperature distribution among the chips can provide useful information for the reliability assessment and fault-mode analysis of a new-generation SiC high-power modules [read more...]
Fig.: SiC MOSFET model structure.
No comments:
Post a Comment