Wednesday, 30 August 2017

[paper] Surface Potential Equation for Low Effective Mass Channel Common Double-Gate MOSFET

Ananda Sankar Chakraborty and Santanu Mahapatra, Senior Member, IEEE
in IEEE Transactions on Electron Devices
vol. 64, no. 4, pp. 1519-1527, April 2017
doi: 10.1109/TED.2017.2661798

Abstract: Formulation of accurate yet computationally efficient surface potential equation (SPE) is the fundamental step toward developing compact models for low effective mass channel quantum well MOSFETs. In this paper, we propose a new SPE for such devices considering multisubband electron occupancy and oxide thickness asymmetry. Unlike the previous attempts, here, we adopt purely physical modeling approaches (such as without mixing the solutions from finite and infinite potential wells or using any empirical model parameter), while preserving the mathematical complexity almost at the same level. Gate capacitances calculated from the proposed SPE are shown to be in good agreement with numerical device simulation for wide range of channel thickness, effective mass, oxide thickness asymmetry, and bias voltages [read more...]
FIG: Total gate capacitance per unit width Cgg (Vg) for 7-nm-thick device with 100% asymmetry in front and back oxide thicknesses. nmax = 2. Line = model. Symbol = TCAD

No comments: