Showing posts with label self-heating. Show all posts
Showing posts with label self-heating. Show all posts

Nov 14, 2024

[paper] TCAD for Circuits and Systems

Z. Stanojevic, X. Klemenschits, G. Rzepa, F. Mitterbauer, C. Schleich,
F. Schanovsky, O. Baumgartner, and M. Karner
TCAD for Circuits and Systems: Process Emulation, Parasitics Extraction, Self-Heating
2024 IEEE BiCMOS and Compound Semiconductor Integrated Circuits and Technology Symposium
BCICTS, Fort Lauderdale, FL, USA, 2024, pp. 294-297
doi: 10.1109/BCICTS59662.2024.10745677

1 Global TCAD Solutions GmbH., Boesendorferstraße 1/12, 1010 Vienna, Austria

Abstract: We present TCAD-based methodologies that go beyond process and device simulations of single transistors. We show that TCAD solvers can be used as effective tools to resolve the intricacies of current and future technology nodes that are otherwise difficult to access using EDA-level methods alone.

Fig: Single NMOS/PMOS FinFET with the local contacts and their parasitic R/C-components; fitting results for NMOS and PMOS FinFET: gate capacitance, transfer characteristics, output characteristics


May 15, 2020

[paper] Electrical characterization of advanced MOSFETs

Valeriya Kilchytska, Sergej Makovejev, Babak Kazemi Esfeh, Lucas Nyssens, Arka Halder,
Jean-Pierre Raskin and Denis Flandre
Electrical characterization of advanced MOSFETs towards analog and RF applications
IEEE LAEDC, San Jose, Costa Rica, 2020, 
doi: 10.1109/LAEDC49063.2020.9073536

Abstract - This invited paper reviews main approaches in the electrical characterization of advanced MOSFETs towards their target analog and RF applications. Advantages and necessity of those techniques will be demonstrated on different study cases of various advanced MOSFETs, such as FDSOI, FinFET, NW in a wide temperature range, based on our original research over the last years. 

URL: https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9073536&isnumber=9072949

Acknowledgements - This work was partially funded by Eniac “Places2Be”, Ecsel “Waytogofast”, FNRS - FRFC “Towards Highly-efficient 10 nm MOSFETs”, FP7 “Nanosil” and “Nanofunction” projects. The authors thank our colleagues from CEA-Leti, ST and Imec, and particularly, F. Andrieu, O. Faynot, T. Poiroux, S. Barraud, M. Haond, N. Planes, N. Collaert, C. Claeys, M. Jurczak, B. Parvais, R. Rooyackers, for providing UTBB FD SOI, NW and FinFET devices and valuable discussions.

Nov 5, 2009

An interesting paper in the Intl. Jornal of Numercal Modelling (vol 22(6))

This is not exactly compact modelling, but it's a nice thing to see:

SPICE-aided modelling of dc characteristics of power bipolar transistors with self-heating taken into account

Janusz Zarbski, Krzysztof Górecki
Department of Marine Electronics, Gdynia Maritime University, Morska 83, 81-225 Gdynia, Poland

Abstract
This paper deals with the problem of calculations of the dc characteristics of power bipolar transistors (BJTs) with self-heating taken into account. The electrothermal model of the considered devices dedicated for PSPICE is presented. The correctness of the model was verified experimentally in all ranges of the BJT operation. Two transistors - BD285 and 2N3055 - were arbitrarily selected for investigation. A good agreement between the measured and calculated characteristics of these transistors was observed.

You can access the online version here.