Chien-Ting Tung
SEMIDV: A Compact Semiconductor Device Simulator with Quantum Effects
ArXiv preprint arXiv:2504.00214 (2025)
Abstract: In this paper, I present SEMIDV – a compact semiconductor device simulator incorporating quantum effects. SEMIDV solves the Poisson-Drift-Diffusion equations for semiconductor devices and provides a user-friendly Python interface for scripting and data analysis. Localization landscape theory is introduced to provide quantum corrections to the Drift- Diffusion equation. This theory directly solves the ground state of the Schrödinger equation without further approximation, offering an efficient solution for quantum effect modeling. Additionally, a compact mobility model considering ballistic transport is developed to capture the ballistic length dependence of mobility and the velocity overshoot effect in short-channel devices. Finally, a study on a nanosheet FET using SEMIDV is conducted. I analyze the electrical characteristics of a state-of- the-art GAA/RibbonFET with a 6 nm gate length and discuss the effects of velocity overshoot and quantum confinement on currents and capacitances. A design for an ultra-short-channel transistor with a gate length down to 4.5 nm with a Vdd = 0.45 V is proposed to push the boundaries of integrated circuit technology further.
FIG: Silicon 6nm RibbonFET CMOS structure for SIMIDV calibration