Showing posts with label low-frequency noise. Show all posts
Showing posts with label low-frequency noise. Show all posts

Dec 14, 2025

[paper] Low-Frequency Noise in Single-Layer Graphene FETs

An extended low-frequency noise compact model for single-layer graphene FETs 
including correlated mobility fluctuations effect
Nikolaos Mavredakis, Anibal Pacheco-Sanchez, and David Jiménez
https://arxiv.org/pdf/2512.08388

Departament d’Enginyeria Electrònica, Escola d’Enginyeria, Universitat Autònoma de Barcelona, Bellaterra 08193 (SP)
Departamento de Electrónica y Tecnología de Computadores, Universidad de Granada, 18011 Granada (SP)


Abstract: Correlated mobility fluctuations are considered in the physics-based carrier number fluctuation (ΔΝ) low-frequency noise (LFN) compact model of single-layer graphene field effect transistors (GFET) in the present study. Trapped charge density and Coulomb scattering coefficient ΔΝ LFN parameters are obtained after applying a parameter extraction methodology, adapted from conventional silicon technologies,to the linear ambipolar regions of GFETs. Appropriate adjustments are considered in the method according to GFETs’physical characteristics. Afterwards, Hooge mobility as well asseries resistance fluctuations LFN parameters can be extracted.The updated LFN model is validated with experimental data from various long and short-channel GFETs at an extendedrange of gate and drain bias conditions.
Fig: SID2/ID2 vs. VGS at 1 Hz for B (a) and A (b) -type RF GFETs with W=12μm and L=100nm
at VDS=60 mV. Markers: measurements, solid lines:model, dashed lines in (b): 
θint=0 V-1. Different colors represent different LFN contributions.

Acknowledgments: This work has received funding from the European Union’s Horizon2020 research and innovation programme under grant agreements NoGrapheneCore3 881603, from Ministerio de Ciencia, Innovación y Universidades under grant agreements RTI2018-097876-B-C21(MCIU/ AEI/ FEDER, UE), PID2021-127840NB-I00(MCIN/AEI/FEDER, UE), and CNS2023-143727 RECAMBIO (MCIN/AEI/ 10.13039 /501100011033). 
This work is also supported by the European Union Next Generation EU/PRTR research project.




Oct 23, 2023

[paper] Lorentzian noise spectra in compact models

Nikolaos Makris*†, Loukas Chevas* and Matthias Bucher*
Verilog-A based implementation of Lorentzian noise spectra in compact models
26th International Conference on Noise and Fluctuations - ICNF
17th-20th October 2023 - Grenoble - France
DOI10.1109/ICNF57520.2023.10472771

* School of Electrical & Computer Engineering, Technical University of Crete (TUC), GR-73100 Chania, Greece        European University on Responsible Consumption and Production (EURECA-PRO) (Joint affiliation)
† Institute of Electronic Structure and Laser, Foundation for Research and Technology-Hellas (IESL-FORTH), GR-71110 Heraklion, Greece


Abstract:In this paper, a simple Verilog-A implementation of Lorentzian noise spectra is introduced that can be used in compact models for the frequency-domain simulation of low-frequency noise in electronic devices. For this purpose, a thermal noise source is combined with a low-pass filter as realized using laplace_nd Verilog-A function in order to achieve Lorentzian noise behavior. This modeling approach can be implemented in any Verilog-A compact model and provides the means for bias-dependent Lorentzian trap modeling. This approach is evaluated in commercial simulator. Application examples are provided to demonstrate the capabilities of this approach.
FIG: Bias dependent model implemented in the EKV3 MOSFET model

Acknowledgements: This work was co-funded by the ERASMUS+ Programme of the European Union (Contract number: 101004049 - EURECA-PRO - EAC-A02-2019 / EAC-A02-2019-1). This research has been co-financed by the European Regional Development Fund of the European Union and Greek national funds through the Operational Program Competitiveness, Entrepreneurship and Innovation, under the call RESEARCH - CREATE - INNOVATE (project code: T2EDK-00340).