Mar 24, 2017

NIST Digital Library of Mathematical Functions


[paper] Pulsed I-V on TFETs: Modeling and Measurements

Pulsed I-V on TFETs: Modeling and Measurements
Quentin Smets, Anne Verhulst, Ji-Hong Kim, Jason P. Campbell, David Nminibapiel, Dmitry Veksler, Pragya Shrestha, Rahul Pandey, Eddy Simoen, David Gundlach, Curt Richter, Kin P. Cheung, Suman Datta, Anda Mocuta, Nadine Collaert, Aaron V.-Y. Thean, and Marc M. Heyns
in IEEE Transactions on Electron Devices, vol. 64, no. 4, pp. 1489-1497, April 2017
doi: 10.1109/TED.2017.2670660

Abstract: Most experimental reports of tunneling field-effect transistors show defect-related performance degradation. Charging of oxide traps causes Fermi-level pinning, and Shockley–Read–Hall (SRH)/trap-assisted tunneling (TAT) cause unwanted leakage current. In this paper, we study these degradation mechanisms using the pulsed I-V technique. Our simulations show pulsed I-V can fully suppress oxide trap charging, unlike SRH and TAT. We discuss several circuit-related pitfalls, and we demonstrate improved transfer characteristics by suppressing oxide trap charging using cryogenic pulsed I-V [read more...]


Mar 16, 2017

[mos-ak] [paper submission] Device and Circuit Compact Modeling TRACK4 at ESSDERC

Dear Compact Modeling Experts,
I would like to draw your attention to newly opened Device and Circuit Compact Modeling TRACK4 at ESSDERC. I was assigned to chair the track 4 with a group of the international reviewers. The new tract will cover a broad range of the compact modeling and its Verilog-A standardization topics (see below). I hope you will find these topic matching your current scientific work and R&D activities and you will eventually submit your conference paper for our new Device and Circuit Compact Modeling TRACK4 at ESSDERC.

Papers must not exceed four A4 pages with all illustrations and references included. All submissions must be received by 10 April, 2017. After selection of papers, the authors will be informed about the decision of the Technical Program Committee by e-mail by June 2, 2017. At the same time, the complete program will be published on the ESSDERC/ESSCIRC website.

I will be glad if you could also proactively promote our Device and Circuit Compact Modeling TRACK4 and also motivate and invite other compact modeling researchers and engineers to also submit their R&D scientific conference contributions. Please distribute my open invitation to all experts in your region.

Already now, I am looking forward to receive your conference submission and then meeting you at ESSDERC in Leuven.

-- thanks in advance -- wladek;
--
ESSDERC TRACK4: Device and Circuit Compact Modeling
TPC <http://www.esscirc-essderc2017.org/essderc-technical-program-committee>
Topics:<http://www.esscirc-essderc2017.org/essderc-call-for-papers>
Compact/SPICE modeling of electronic, optical, organic, and hybrid devices and their IC implementation and interconnection. Topics include compact/SPICE models and its Verilog-A standardization of the semiconductor devices (including Bio/Med sensors, MEMS, Microwave, RF, High voltage and Power), parameter extraction, compact models for emerging technologies and novel devices, performance evaluation, reliability, variability, and open source benchmarking/implementation methodologies. Modeling of interactions between process, device, and circuit design as well as Foundry/Fabless Interface Strategies.
---
WG160317

--
You received this message because you are subscribed to the Google Groups "mos-ak" group.
To unsubscribe from this group and stop receiving emails from it, send an email to mos-ak+unsubscribe@googlegroups.com.
To post to this group, send email to mos-ak@googlegroups.com.
Visit this group at https://groups.google.com/group/mos-ak.
For more options, visit https://groups.google.com/d/optout.

Qucs Roadmap

The QUCS Roadmap should serve as base to track the status of each action point. Enhancements can be handled in two ways:
  • For simpler enhancements an issue/bug ticket shall be created and referenced back here. The pertinent discussion and documentation should be done on the body of each ticket.
  • For more complex enhancements a Qucs Enhancement Proposal should be created and reference back here.
The open action points can be further categorized concerning the difficulty or amount of work as (Easy, Medium, Hard) and priority (0-3, 0 is the highest). See the Port to Qt4 / Qt5 for an example. Tickets will be tracked individually and assigned to milestones leading to stable releases.


Read more about QUCS Roadmap

Mar 7, 2017

Bio-SPICE

Bio-SPICE: Biological Simulation Program for Intra- and Inter-Cellular Evaluation
 
Bio-SPICE, an open source framework and software toolset for Systems Biology, is intended to assist biological researchers in the modeling and simulation of spatio-temporal processes in living cells. In addition, our goal is to develop and serve a user community committed to using, extending, and exploiting these tools to further our knowledge of biological processes.

In collaboration with other Bio-SPICE, Community members, we will develop, license, distribute, and maintain a comprehensive software environment that integrates a suite of analytical, simulation, and visualization tools and services to aid biological researchers engaged in building computable descriptions of cellular functions. From disparate data analysis and information mining to experimental validation of computational models of cell systems, our environment will offer a comprehensive substrate for efficient research, collaboration, and publication.

Mission
Bio-SPICE, is intended for modeling and simulation of spatio-temporal processes in living cells. The goals of Bio-SPICE, are to support discovery through:
  1. Developing computational and mathematical models of bio-molecular systems in cells capturing the nature of gene-protein interactions
  2. Developing tools that can rapidly incorporate relevant experimental data and knowledge known in the literature to build models of pathways, networks, and spatial processes
  3. Developing simulation tools for the dynamic analysis of bio-molecular systems
  4. Creating an extensible framework for easy insertion of models and their refinement, as well as customization to specific mechanisms
In addition, our goal is to develop and serve a user community committed to using, extending, and exploiting these tools to further our knowledge of biological processes. In collaboration with other Bio-SPICE Community members, we will develop, license, distribute, and maintain a comprehensive software environment that integrates a suite of analytical, simulation, and visualization tools and services to aid biological researchers engaged in building computable descriptions of cellular functions. From disparate data analysis and information mining to experimental validation of computational models of cell systems, our environment will offer a comprehensive substrate for efficient research, collaboration, and publication [read more...]