Showing posts with label characterization. Show all posts
Showing posts with label characterization. Show all posts

Oct 25, 2023

[paper] Sub-THz HICUM for SiGe HBTs

Soumya Ranjan Panda, Thomas Zimmer, Anjan Chakravorty, Nicolas Derrier
and Sebastien Fregonese
Exploring Compact Modeling of SiGe HBTs in Sub-THz Range With HICUM
in IEEE TED, DOI: 10.1109/TED.2023.3321017.

IMS laboratory, CNRS, University of Bordeaux (F)
Department of Electrical Engineering, IIT Madras (IN)
STMicroelectronics, 38920 Crolles (F)


Abstract : This study delves deeper into the high frequency (HF) behavior of state-of-the-art sub-THz silicon germanium heterojunction bipolar transistors (SiGe HBTs) fabricated with 55 nm BiCMOS process technology from STM. Using measurement data, calibrated TCAD simulations, and compact model simulations, we present a comprehensive methodology for extracting several HF parameters (related to parasitic capacitance partitioning and nonquasi-static effects) of the industry standard model, HICUM. The parameter extraction strategies involve thorough physics-based investigation and sensitivity analysis. The latter allowed us to precisely evaluate the effects of parameter variations on frequency dependent characteristics. The accuracy of the finally deployed model is tested by comparing the model simulation with measured small-signal two-port parameters of SiGe HBTs up to 330 GHz.
FIG: a.)  TEM image of the SiGe HBT device; b.) 2D TCAD structure simulation; c.) Large signal equivalent circuit of HICUM L2 compact model; d.) and e.) adjunct networks for vertical NQS effects

Acknowledgment: The authors would like to acknowledge Dider Celi, STM, for valuable discussion about the compact modeling of heterojunction bipolar transistors (HBTs), and they also like to thank STM for providing the silicon wafers. This work was supported by NANO2022 Important Project of Common European Interest Project (IPCEI), and SHIFT Grant ID 101096256.


Sep 26, 2023

[paper] Characterization and Modeling of SOI LBJTs at 4K

Yuanke Zhang, Yuefeng Chen, Yifang Zhang, Jun Xu, Chao Luo, and Guoping Guo
Characterization and Modeling of Silicon-on-Insulator 
Lateral Bipolar Junction Transistors at Liquid Helium Temperature
IEEE TED Vol. XX, No. XX, preprint arXiv:2309.09257 (2023).

University of Science and Technology of China (USTC), Hefei 230026, Anhui, China
CAS Key Lab ofQuantum Information, Hefei 230026, Anhui, China.

Abstract: Conventional silicon bipolars are not suitable for low-temperature operation due to the deterioration of current gain (β). In this paper, we characterize lateral bipolar junction transistors (LBJTs) fabricated on silicon-on insulator (SOI) wafers down to liquid helium temperature (4 K). The positive SOI substrate bias could greatly increase the collector current and have a negligible effect on the base current, which significantly alleviates β degradation at low temperatures. We present a physical-based compact LBJT model for 4 K simulation, in which the collector current (IC) consists of the tunneling current and the additional current component near the buried oxide (BOX)/silicon interface caused by the substrate modulation effect. This model is able to fit the Gummel characteristics of LBJTs very well and has promising applications in amplifier circuits simulation for silicon-based qubits signals.

Fig: IC (solid lines) and IB (dash lines) versus VBE of LBJT at different temperatures 
under (a) VBOX = 0 V; (b) VBOX = 12 V, VCE = 1 V.

Acknowledgement: The device fabrication was done by Prof. Zhen Zhang’s group in the Angstrom Microstructure Laboratory (MSL) at Uppsala University. Dr. Qitao Hu, Dr. Si Chen, Prof. Zhen Zhang are acknowledged for the device design and fabrication, and the technical staff of MSL are acknowledged for their process support.




Nov 22, 2021

[paper] ACM Model for CMOS Analog Circuits Hand Design

Ademirde Jesus Costaab, Eliyas Mehdipourb, Edson PintoSantanab,
and Ana Isabela Araújo Cunhab
Application of Improved ACM Model to the Design by Hand of CMOS Analog Circuits
Microelectronics Journal
Available online 16 November 2021, 105309
DOI: 10.1016/j.mejo.2021.105309
   
a Instituto Federal da Bahia, Santo Amaro, Brazil
b DEEC, Escola Politécnica, Universidade Federal da Bahia, Salvador, Brazil


Abstract: This work aims to provide solutions and perspectives for CMOS analog designers by reducing the time spent in iteratively dimensioning the devices and simulating the circuits. For this purpose, by-hand design methodologies for a few analog cells are proposed employing a MOSFET compact model which has been earlier improved by adding sub-models for some second order effects. A semiempirical sub-model and characterization method is presented for the Early voltage, thus enhancing the set of model equations for hand calculations. The accomplishment of several by-hand design examples and the comparison between simulation results and specifications succeeded in demonstrating the usefulness and advantages of using the improved MOSFET compact model in the proposed methodologies.

Fig: gm/Id Plot

Aug 21, 2021

[book] Fully Depleted SOI

Sorin Cristoloveanu; Fully Depleted Silicon-On-Insulator:
Nanodevices, Mechanisms and Characterization
2021 Elsevier B.V. 
ISBN: 978-0-12-819643-4

Fully Depleted Silicon-On-Insulator provides an in-depth presentation of the fundamental and pragmatic concepts of this increasingly important technology.

There are two main technologies in the marketplace of advanced CMOS circuits: FinFETs and fully depleted silicon-on-insulators (FD-SOI). The latter is unchallenged in the field of low-power, high-frequency, and Internet-of-Things (IoT) circuits. The topic is very timely at research and development levels. Compared to existing books on SOI materials and devices, this book covers exhaustively the FD-SOI domain. 

Key Features:

  • Written by a top expert in the silicon-on-insulator community and IEEE Andrew Grove 2017 award recipient
  • Comprehensively addresses the technology aspects, operation mechanisms and electrical characterization techniques for FD-SOI devices
  • Discusses FD-SOI’s most promising device structures for memory, sensing and emerging applications
Table of Contents:
Front Matter
Preface
Part I: Technology
Chapter 1 - FD-SOI technology pp. 3-37
Part II: Mechanisms in FD-SOI MOSFET
Chapter 2 - Coupling effects pp. 41-70
Chapter 3 - Scaling effects pp. 71-114
Chapter 4 - Floating-body effects pp. 115-138
Part III: Electrical characterization techniques for FD-SOI structures
Chapter 5 - The pseudo-MOSFET pp. 141-177
Chapter 6 - Diode-based characterization methods pp. 179-200
Chapter 7 - Characterization methods for FD-SOI MOSFET pp. 201-238
Part IV: Innovative FD-SOI devices
Chapter 8 - Electrostatic doping and related devices pp. 241-265
Chapter 9 - Band-modulation devices pp. 267-298
Chapter 10 - Emerging devices pp. 299-348
FD-SOI teasers pp. 349-352
Index

Jun 28, 2021

[paper] RTN and BTI statistical compact modeling

G.Pedreiraa, J.Martin-Martineza, P.Saraza-Canflancab, R.Castro Lopezb, R.Rodrigueza, E.Rocab, F.V.Fernandezb, M.Nafriaa 
Unified RTN and BTI statistical compact modeling from a defect-centric perspective
Solid-State Electronics
Available online 25 June 2021, 108112
In Press, Journal Pre-proof
DOI: 10.1016/j.sse.2021.108112

a Universitat Autònoma de Barcelona (UAB), Electronic Engineering Department, REDEC group. Barcelona, Spain
b Instituto de Microelectrónica de Sevilla, IMSE-CNM, CSIC and Universidad de Sevilla, Spain


Abstract: In nowadays, deeply scaled CMOS technologies, time-dependent variability effects have become important concerns for analog and digital circuit design. Transistor parameter shifts caused by Bias Temperature Instability and Random Telegraph Noise phenomena can lead to deviations of the circuit performance or even to its fatal failure. In this scenario extensive and accurate device characterization under several test conditions has become an unavoidable step towards trustworthy implementing the stochastic reliability models. In this paper, the statistical distributions of threshold voltage shifts in nanometric CMOS transistors will be studied at near threshold, nominal and accelerated aging conditions. Statistical modelling of RTN and BTI combined effects covering the full voltage range is presented. 
The results of this work suppose a complete modelling approach of BTI and RTN that can be applied in a wide range of voltages for reliability predictions.



Jun 2, 2021

[paper] Effect of the AC-Signal Frequency on Flat-Band Voltage of Al/HfO2/SiO2/Si Structures

Andrzej Mazurak, Bogdan Majkusiak
Investigation of the Anomalous Effect of the AC-Signal Frequency 
on Flat-Band Voltage of Al/HfO2/SiO2/Si Structures
Solid-State Electronics (2021) SSE 108107 
DOI:10.1016/j.sse.2021.108107

*TU Warsaw, Institute of Microelectronics and Optoelectronics, Koszykowa 75, 00-662 Warsaw, Poland

Abstract: MIS structures with double-layer HfO2/SiO2 gate stacks were fabricated. The admittance measurements revealed an anomalous voltage shift of the capacitance-voltage characteristics, modulated by the ac signal frequency. The effect is discussed in terms of the oxide charge modulation through the frequency dependent leakage mechanism.
Fig: Measured Gpm conductance–voltage characteristics for the n-type MIS structure.
  • An anomalous effect of the ac-signal frequency on the voltage shift of the CV characteristics of Al/HfO2/SiO2/Si devices was observed.
  • The observed effect is stable, reproducible, and reversible and is not driven by the measurement procedure or the measurement protocol parameters.
  • The effect is explained through a frequency dependent leakage conductance which affects the electric charge trapped interior the gate stack.
  • A linear dependence of the leakage conductance on the ac signal frequency is observed.

Apr 13, 2021

[papers] Compact Modeling

[1] Zhang, Yuanke, Tengteng Lu, Wenjie Wang, Yujing Zhang, Jun Xu, Chao Luo, and Guoping Guo. "Characterization and Modeling of Native MOSFETs Down to 4.2 K." arXiv:2104.03094 (2021).

Abstract: The extremely low threshold voltage (VTH) of native MOSFETs (VTH≈0 V @ 300 K) is conducive to the design of cryogenic circuits. Previous research on cryogenic MOSFETs mainly focused on the standard threshold voltage (SVT) and low threshold voltage (LVT) MOSFETs. In this paper, we characterize native MOSFETs within the temperature range from 300 K to 4.2 K. The cryogenic VTH increases up to ∼0.25 V (W/L = 10 µm/10 µm) and the improved subthreshold swing (SS) ≈ 14.30 mV/dec @ 4.2 K. The off-state current (IOFF) and the gate-induced drain leakage (GIDL) effect are ameliorated greatly. The step-up effect caused by the substrate charge and the transconductance peak effect caused by the energy quantization in different subbands are also discussed. Based on the EKV model, we modified the mobility calculation equations and proposed a compact model of large size native MOSFETs suitable for the range of 300 K to 4.2 K. The mobility-related parameters are extracted via a machine learning approach and the temperature dependences of the scattering mechanisms are analyzed. This work is beneficial to both the research on cryogenic MOSFETs modeling and the design of cryogenic CMOS circuits for quantum chips.
Fig: I-V curves of native MOSFETs with W/L= 10/10µm measured (symbol) and calculated (solid line) at various temperatures. (a) Acomparison of the calculation results between this model and the  EKV2.6 model at 77K and 4.2K. (b) Measurement and calculation results of  the output characteristic at 4.2 K.

[2] Qixu Xie  Guoyong Shi; An analytical gm/ID‐based harmonic distortion prediction method for multistage operational amplifiers; Int J Circ Theor Appl. 2021; 1– 27. DOI: 10.1002/cta.3012

Abstract: An analytical stage‐based harmonic distortion (HD) analysis method for multistage operational amplifiers (Op Amps) is developed in this work. This work contributes two fundamental methods that make the analytical HD prediction possible at the circuit level. Firstly, we propose that the traditionally used first order small‐signal transistor quantities gm (transconductance) and go (output conductance) in the gm/ID design methodology for bulk complementary metal‐oxide‐semiconductor (CMOS) technology can be extended to the higher order quantities gm(k) and go(k) (k=1,2,3). With proper normalization, these quantities become neutral to the device dimensions and operation currents, hence can be precharacterized by sweeping simulations and used as lookup tables. Secondly, we further develop analytical nonlinearity expressions for a set of commonly used amplifier stages, represented as the functions of the nonlinearity parameters gm(k) and go(k) of the transistors that form a stage circuit. A combination of these two fundamental methods on hierarchical nonlinearity modeling enables us to apply the existing analytical HD estimation methods for the stage‐form macromodels to predict the circuit‐level HD behavior, overcoming the need of running repeated simulations under device resizing and rebiasing. The proposed harmonic distortion analysis method has been validated by application to real multistage amplifiers, achieving HD prediction results in excellent agreement to fully transistor‐level circuit simulation results but with substantial speedup.

Nov 20, 2020

[paper] Characterization of ultrathin FDSOI devices using subthreshold slope method

Teimuraz Mchedlidze1, and Elke Erben2
Characterization of ultrathin FDSOI devices using subthreshold slope method
Phys. Status Solidi A. Accepted Manuscript
DOI: 10.1002/pssa.202000625

1 TU Dresden, Germany
2 Globalfoundries, Dresden, Germany

Abstract: The subthreshold current-voltage (subthreshold slope) characteristic of fully depleted silicon-on-insulator high-k dielectric-metal gate field-effect transistor is applied for evaluation of the interface traps located at both, the front and back channels. The proposed characterization method allows an estimation of averaged trap densities separately for the front and the back interfaces of the channel. Performing subthreshold slope measurements at several temperatures allow the extraction of the energy distributions of the interface trap densities for both interfaces and obtaining essential characteristics of the stack.

Fig: Results of ID(VGF,k,T) measurements for EG sample. At each temperature 
(200, 300 and 400K) a group of curves contains data for eight k values
(k = 0 to 3 with step 0.5 and kOC; solid curve). 

Acknowledgements: The authors would like to acknowledge funding of the study in the frames of the IPCEI WIN- FDSOI project from Global Foundries. We want to thank Jörg Weber (TU Dresden), Luca Pirro (Global Foundries) and Rolf Öttking (AQ Computare, Chemnitz) for thoughtful discussions and suggestions.





Oct 15, 2020

[webinar] GaN HEMT Devices Characterization Using ASM-HEMT Model

ASM-HEMTモデルを使ったGaN HEMTデバイスの特性評価とモデリング


お知らせ: キーサイト・テクノロジーのウェブセミナー「ASM-HEMTモデルを使ったGaN HEMTデバイスの特性評価とモデリング 」

ライブウェブセミナーの日付: 2020年10月14日
ライブウェブセミナーの時刻: 10:45 JST

Aug 31, 2020

[paper] Bulk CMOS Technology at Sub-Kelvin Temperature

Characterization and Modeling of 0.18µm Bulk CMOS Technology 
at Sub-Kelvin Temperature 
Teng-Teng Lu1,2, Zhen Li1,2, Chao Luo1,2, Jun Xu2, Weicheng Kong3
and Guoping Guo1 (Member, IEEE) 
IEEE J-EDS, vol. 8, pp. 897-904, 2020
DOI: 10.1109/JEDS.2020.3015265.

1Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei 230026, China 
2Department of Physics, University of Science and Technology of China, Hefei 230026, China 
3Department of Quantum Hardware, Origin Quantum Computing Company Limited, Hefei 230026, China

Abstract: Previous cryogenic electronics studies are mostly at 77K and 4.2K. Cryogenic characterization of a 0.18μm standard bulk CMOS technology (operating voltages: 1.8V and 5V) is presented in this paper. Several NMOS and PMOS devices with different width to length ratios (W/L) were extensively tested and characterized under various bias conditions at sub-kelvin temperature. In addition to devices dc characteristics, the kink effect and current overshoot phenomenon are observed and discussed at sub-kelvin temperature. Especially, the current overshoot phenomenon in PMOS devices at sub-kelvin temperature is shown for the first time. The transfer characteristics of MOSFET devices (1.8V W/L = 10μm/10μm) at sub-kelvin temperature are modeled using the simplified EKV model. This work facilitates the CMOS circuits design and the integration of CMOS circuits with silicon-based quantum chips at extremely low temperatures.
FIG: IDS-VGS curves of large thin TOX NMOS (a,b,e,f) and PMOS (c,d,g,h) devices at sub-kelvin temperature measured (symbols) and simulated (solid lines). 

Aknowlegement: This work was supported in part by the National Key Research and Development Program of China under Grant 2016YFA0301700, in part by the National Natural Science Foundation of China under Grant 11625419, in part by the Anhui initiative in Quantum information Technologies under Grant AHY080000, and in part by the USTC Center for Micro and Nanoscale Research and Fabrication.

Jul 20, 2020

[C4P] Advanced FETs: Design, Fabrication and Applications

Call for Papers: Special MDPI  Issue 
"Advanced Field Effect Transistors: Design, Fabrication and Applications"
Deadline for manuscript submissions: 31 July 2021.

Dear Colleagues,
Planar MOS Field Effect Transistors (MOSFETs) were invented by Atalla and Kahng in 1959. After a decade, the MOSFETs entered mass production, as basic building blocks of P-, N-, and CMOS integrated circuits (ICs). Until the end of the twentieth century, MOSFET performance was largely improved by the implementation of so-called scaling rules. An exponential growth in the time of the transistor number per chip (observation formulated as Moore law) was achieved. This, together with advantageous characteristics and a nice feature of the planar MOSFETs allowing one to design the ICs by defining a width/length ratio, led to the great success of the CMOS technology on Si and SOI substrates.
However, starting from the 90 nm node, it has been observed that the standard scaling does not sufficiently translate into MOSFET performance improvement. Moreover, some device characteristics become degraded, e.g. gate leakage, channel leakage, variability and reliability. This has led to the development of preventative measures (e.g. high-k dielectrics) or performance boosters (e.g. channel strain engineering and channel materials). Furthermore, 2D and 3D multi-gate FETs were introduced to improve gate control over the channel and increase the channel aspect ratio. Multi-gate FETs are the only option for the 5nm node, which is expected soon, whereas they will have to be replaced by surrounding gate FETs for the 3nm node. For the past few years, the attention of researchers has been attracted by steep-subthreshold slope devices, enabling the reduction of supply voltage. A need for devices for quantum computing has appeared. FETs and HEMTs, for very high frequency applications, GaN, SiC and FETs for high voltage, high power, high temperature applications, and many other FET types, are in use or under development as a micro- and nanoelectronics reply to electronics needs in different domains.
There are many issues regarding the design, fabrication and applications of advanced field effect transistors. It is my pleasure to invite you to share your expertise in this Special Issue. Full papers, communications and reviews are all welcome.

Dr. Daniel Tomaszewski, ITE, Warsaw (PL)
Special Issue Guest Editor

[read more...]

Sep 27, 2018

[paper] Importance of complete characterization setup on onwafer TRL calibration in sub-THz range

Chandan Yadav, Marina Deng, Magali De Matos, Sebastien Fregonese
and  Thomas Zimmer
IMS Laboratory, University of Bordeaux
351 cours de la Libération – 33405 Talence cedex, France

Abstract: In this paper, we present the effect of different sub-mm and mm-wave probe geometry and topology on the measurement results of dedicated test-structures calibrated with on-wafer TRL. These results are compared against 3D EM simulation of the intrinsic test-structures. To analyze difference between the measured and intrinsic EM simulation results, onwafer TRL calibration performed on EM simulation results of a dedicated test-structure is also presented. 

FIG: 3D view of the Open-M1 where metal-1 (M1) does not have connection with ground as shown in the enlarged view.



Oct 17, 2017

[paper] Accurate diode behavioral model with reverse recovery

Stanislav Banáša,b, Jan Divínab, Josef Dobešb, Václav Paňkoa
aON Semiconductor, SCG Czech Design Center, Department of Design System Technology, 1. maje 2594, 756 61 Roznov pod Radhostem, Czech Republic
bCzech Technical University in Prague, Faculty of Electrical Engineering, Department of Radioelectronics, Technicka 2, 166 27 Prague 6, Czech Republic
Volume 139, January 2018, Pages 31–38

Highlights:

  • The complex robust time and area scalable Verilog-A model of diode containing reverse recovery effect has been developed.
  • Due to implemented reverse recovery effect the model is useful especially for high-speed or high-voltage power devices.
  • The model can be used as stand-alone 2-terminal diode or as a parasitic p-n junction of more complex lumped macro-model.
  • Two methods of model parameter extraction or model validation have been demonstrated.

ABSTRACT: This paper deals with the comprehensive behavioral model of p-n junction diode containing reverse recovery effect, applicable to all standard SPICE simulators supporting Verilog-A language. The model has been successfully used in several production designs, which require its full complexity, robustness and set of tuning parameters comparable with standard compact SPICE diode model. The model is like standard compact model scalable with area and temperature and can be used as a stand-alone diode or as a part of more complex device macro-model, e.g. LDMOS, JFET, bipolar transistor. The paper briefly presents the state of the art followed by the chapter describing the model development and achieved solutions. During precise model verification some of them were found non-robust or poorly converging and replaced by more robust solutions, demonstrated in the paper. The measurement results of different technologies and different devices compared with a simulation using the new behavioral model are presented as the model validation. The comparison of model validation in time and frequency domains demonstrates that the implemented reverse recovery effect with correctly extracted parameters improves the model simulation results not only in switching from ON to OFF state, which is often published, but also its impedance/admittance frequency dependency in GHz range. Finally the model parameter extraction and the comparison with SPICE compact models containing reverse recovery effect is presented [read more...]

FIG: Solving the recursive calculation of reverse recovery charge

Feb 24, 2016

Keysight: Full SPICE Characterization Flow

Keysight Technologies offers half a daya seminar at IEMN, Villeneuve d’Ascq. This free seminar is an opportunity to discover "Full SPICE Characterization Flow". The content is open, based on practical industrial and academic examples to illustrate the features of Keysight CAD/EDA software tools:
  • Introduction (20 min)
  • Part 1 - Measurements Automatization (30 min)
  • Part 2 - Spice Model Extraction  (60 min)
  • Part 3 - Quality Assurance Model (20 mins)
  • Q/A Session (20 min)
Place: Grand Amphithéâtre de l’IEMN, Laboratoire Centrale, Avenue Henri Poincaré F-59491 Villeneuve d’Ascq (F)
Date 17 March 2016

[Register online]

May 1, 2013

13th HICUM Workshop 2013


HICUM Workshop at TU-Delft, May 27-28, 2013
The HIgh CUrrent Model (HICUM) has become an industry standard and one of the most suitable compact models for modern HBTs fabricated in latest process technologies covering a wide range of high frequency and mmW applications.
Since 2001, the annual HICUM Workshop has become a technical forum for the needs and interests of model users and developers for discussing the present trends and future needs of the bipolar transistor modeling and circuit design community.

Workshop Highlights:
  • Special presentation by Prof. Spirito on mm-wave on-wafer measurements
  • Various presentations covering the modeling of various bipolar transistor phenomena, new parameter extraction strategies, production-type model development, model testing and performance comparisons
  • Special presentations on benchmark circuits for model verification (solicited)