Showing posts with label HBT. Show all posts
Showing posts with label HBT. Show all posts

Mar 1, 2021

[papers] compact/SPICE modeling

[1] M. Müller, P. Dollfus and M. Schröter, "1-D Drift-Diffusion Simulation of Two-Valley Semiconductors and Devices," in IEEE Transactions on Electron Devices, vol. 68, no. 3, pp. 1221-1227, March 2021, doi: 10.1109/TED.2021.3051552.

Abstract: A two-valley formulation of 1-D drift-diffusion transport is presented that takes the coupling between the valleys into account via a new approximation for the nonlocal electric field. The proposed formulation is suitable for the simulation of III–V heterojunction bipolar transistors as opposed to formulations that employ the single electron gas approximation with a modified velocity-field model, which also causes convergence problems. Based on Boltzmann transport equation simulations, model parameters of the proposed two-valley formulation are given for GaAs, InP, InAs, and GaSb at room temperature. Applications of the new formulation are also demonstrated. 
Code/Dataset: This article contains datasets made available via IEEE DataPort, a repository of datasets intended to facilitate analysis and enable reproducible research. Click the dataset name below to access it on the IEEE DataPort website.

[2] A. Rawat et al., "Experimental Validation of Process-Induced Variability Aware SPICE Simulation Platform for Sub-20 nm FinFET Technologies," in IEEE Transactions on Electron Devices, vol. 68, no. 3, pp. 976-980, March 2021, doi: 10.1109/TED.2021.3053185.

Abstract:We propose an experimentally validated physics-based process-induced variability (PIV) aware SPICE simulation framework–enabling the estimation of performance variation due to line-edge-roughness (LER), metal-gate-granularity (MGG), random-dopant-fluctuation (RDF), and oxide-thickness-variation (OTV) at sub-20 nm technology node devices. The framework utilizes LER, RDF, OTV, and MGG defining parameters such as fin-edge correlation coefficient (ρ), autocorrelation length (Λ), grain-size (GS), σ[EOT], etc. as the inputs, and produces IdVg distribution of ensemble size 250 as an output. We have validated the framework against 14 nm FinFET experimental data for IdVg trends as well as for the threshold-voltage (Vth), ON-current (Ion), and subthreshold slope (SS) distributions for a range of device dimensions with a reasonably good match. The worst and the best case R square errors are 0.64 and 0.98, respectively, for the validation. The very nature of the proposed framework allows the designers to use it for a vast range of process technologies. Such models are of dual importance, as it enables a PIV aware prediction of circuit-level performance, and provides a platform to estimate PIV parameters efficiently, on-par with sophisticated structural characterization tools.

[3] Blake W. Nelson, Andrew N. Lemmon, Sergio J. Jimenez, H. Alan Mantooth, Brian T. DeBoi, Christopher D. New, Md Maksudul Hossain, "Computational Efficiency Analysis of SiC MOSFET Models in SPICE: Dynamic Behavior," in IEEE Open Journal of Power Electronics, vol. 2, pp. 106-123, 2021, doi: 10.1109/OJPEL.2021.3056075.

Abstract: Transient simulation of complex converter topologies is a challenging problem, especially in detailed analysis tools like SPICE. Transistor models presented for SPICE are often evaluated by accuracy, with less consideration for the computational cost of model elements. In order to optimize models for application simulations, this research quantifies the relative simulation performance of modeling approaches and contextualizes the results with regard to accuracy. It is well established that the primary contributor to semiconductor dynamic behavior is the voltage-dependent interelectrode capacitances. Therefore, this study isolates these model components to resolve their influence on model accuracy and run-time. Both the voltage-dependencies modeled, and the mathematic formulation chosen strongly influence the accuracy of interelectrode capacitance models. In addition to these factors, the specific implementation chosen within SPICE also determines simulation performance. Through careful evaluation of these factors, this study offers specific recommendations for optimal implementations of interelectrode capacitances in SPICE.
Fig: DPT system schematic, components, and metrology.

[4] Sherif M. Sharroush & Yasser S. Abdalla; Parameter extraction and modelling of the MOS transistor by an equivalent resistance, Mathematical and Computer Modelling of Dynamical Systems, (2021) 27:1, 50-86, DOI: 10.1080/13873954.2020.1857790

Abstract: During the analysis of multi-transistor circuits, the need arises to evaluate the time delay or the power consumption of the circuit. Due to the complexity of the transistor model, several complicated equations arise from which a compact-form solution cannot be obtained and a suitable physical insight cannot be drawn. With this regard, two contributions are presented in this paper. The first one is a fully analytical parameter extraction approach to be applied on the MOS transistors. The second one is a quantitative method for simplifying the analysis of MOS circuits by modelling the MOS transistor by a suitable equivalent resistance adopting the time-delay or the power-consumption equivalence criteria. The parameter-extraction method is verified by using the extracted parameters in the derived expressions according to the second contribution. Compared to other representations, the agreement of the proposed model with the simulation results is very good.
Fig: Finding Vthn0 as the intercept of the linear portion of the Id-Vgs characteristics with the horizontal axis. The curve corresponds to Vds=1V. The term ‘exact relationship’ means data from the simulation results











Dec 1, 2020

[paper] THz characterization and modeling of SiGe HBTs

Sebastien Fregonese, Marina Deng, IEEE member, Marco Cabbia, Chandan Yadav*, IEEE member, Magali De Matos, and Thomas Zimmer, Senior Member, IEEE
THz characterization and modeling of SiGe HBTs
review (invited)
IEEE J-EDS, 2020, pp.1-1 
DOI:10.1109/JEDS.2020.3036135
hal-03014869

IMS Laboratory, University of Bordeaux (F)
*Department of Electronics and Communication Engineering, National Institute of Technology Calicut (IN)


Abstract: This paper presents a state-of-art review of on-wafer S-parameter characterization of THz silicon transistors for compact modelling purpose. After, a brief review of calibration/deembedding techniques, the paper focuses on the on-wafer calibration techniques and especially on the design and dimensions of lines built on advanced silicon technologies. Other information such as the pad geometry, the ground plane and the floorplan of the devices under test are also compared. The influence of RF probe geometry on the coupling with the substrate and adjacent structures is also considered to evaluate the accuracy of the measurement, especially using EM simulation methodology. Finally, the importance of measuring above 110 GHz is demonstrated for SiGe HBT parameter extraction. The validation of the compact model is confirmed thanks to an EM-spice cosimulation that integrates the whole calibration cum deembedding procedure.
Fig: EM probe models based on Picoprobe GGB (a) 1 GHz -110 GHz, (b) WR5, (c) WR3 and d) WR2.2. In all models, white=coaxial insulator, gray=solder, yellow=metal.

A complete description of probe topology and technology is given in:
A. Rumiantsev et R. Doerner; RF Probe Technology: History and Selected Topics; IEEE Microw. Mag., vol. 14, no 7, p. 46‑58, Nov. 2013, DOI: 10.1109/MMM.2013.2280241

Aknowledgement: This work is partly funded by the French Nouvelle-Aquitaine Authorities through the FAST project. The authors also acknowledge financial support from the EU under Project Taranto (No. 737454). The authors would like to thank STM for supplying the silicon wafer.


Nov 24, 2016

[paper] Small-Signal Characterization and Modeling of 55 nm SiGe BiCMOS HBT up to 325 GHz

Small-Signal Characterization and Modeling of 55 nm SiGe BiCMOS HBT up to 325GHz
Marina Denga, Thomas Quémeraisb, Simon Bouvota, b, Daniel Gloriab, Pascal Chevalierb
Sylvie Lépillieta, François Dannevillea, Gilles Dambrinea
aIEMN UMR CNRS 8520, University of Lille, Avenue Poincaré, CS60069, 
59652 Villeneuve-d’Ascq Cedex, France
bSTMicroelectronics, 850 rue Jean Monnet, 38926 Crolles, France

Highlights
  • The SiGe HBT full S-parameters from 250MHz to 325GHz under multiple bias conditions are presented for the first time.
  • Standard calibration and de-embedding techniques are used and remained valid up to 325GHz thanks to a reduction of the test structures dimensions.
  • A simple and accurate small-signal electrical model was extracted and compared with measurements up to 325GHz.

Received 19 September 2016, Revised 18 November 2016, Accepted 21 November 2016, Available online 22 November 2016 [read more...]

http://dx.doi.org/10.1016/j.sse.2016.11.012

May 1, 2013

13th HICUM Workshop 2013


HICUM Workshop at TU-Delft, May 27-28, 2013
The HIgh CUrrent Model (HICUM) has become an industry standard and one of the most suitable compact models for modern HBTs fabricated in latest process technologies covering a wide range of high frequency and mmW applications.
Since 2001, the annual HICUM Workshop has become a technical forum for the needs and interests of model users and developers for discussing the present trends and future needs of the bipolar transistor modeling and circuit design community.

Workshop Highlights:
  • Special presentation by Prof. Spirito on mm-wave on-wafer measurements
  • Various presentations covering the modeling of various bipolar transistor phenomena, new parameter extraction strategies, production-type model development, model testing and performance comparisons
  • Special presentations on benchmark circuits for model verification (solicited)