Apr 30, 2021

[paper] Dynamic Simulation of a-IGZO TFT Circuits Using AFCM

Y. Hernández-Barrios1, J. N. Gaspar-Angeles1, M. Estrada1, B. Íñiguez2, And A. Cerdeira1
Dynamic Simulation of a-IGZO TFT Circuits Using the Analytical Full Capacitance Model (AFCM)
IEEE Journal of the Electron Devices Society, vol. 9, pp. 464-468, 2021, 
doi: 10.1109/JEDS.2020.3045347

1 SEES, Departamento de Ingeniería Eléctrica, CINVESTAV-IPN, Mexico City 07360, Mexico
2 Departament d’Enginyeria Electrònica, Elèctrica i Automàtica, URV, Tarragona 43007, Spain

Abstract: The Analytical Full Capacitance Model (AFCM) for amorphous oxide semiconductors thin film transistors (AOSTFTs) is first validated, using a 19-stages Ring Oscillator (RO) fabricated and measured. The model was described in Verilog-A language to use it in a circuit simulator in this case SmartSpice from Silvaco. The model includes the extrinsic effects related to specific overlap capacitances present in bottom-gate AOSTFT structures. The dynamic behavior of the simulated circuit, when the TFT internal capacitances are increased or decreased and for different supply voltages of 10, 15 and 20 V, is compared with measured characteristics, obtaining a very good agreement. Afterwards, the AFCM is used to simulate the dynamic behavior of a pixel control circuit for a light emitting diode active matrix display (AMOLED), using an AOSTFT.

FIG: Fabricated and measured 19-stages Ring Oscillator (RO)
of amorphous oxide semiconductors (AOS) thin film transistors (TFTs) 

Aknowlwgement: This work was supported in part by the Consejo Nacional de Ciencia y Tecnología (CONACYT) under Project 237213 and Project 236887; in part by the H2020 program of the European Union under Contract 645760 (DOMINO); in part by contract “Thin Oxide TFT SPICE Model” with Silvaco Inc., under Grant T12129S; and in part by ICREA Academia 2013 from ICREA Institute and the Spanish Ministry of Economy and Competitiveness under Project TEC2015-67883-R GREENSENSE.

 

[paper] Does the Threshold Voltage Extraction Method Affect Device Variability?

Gabriel Espiñeira; Antonio J. García-Loureiro; Natalia Seoane
Does the Threshold Voltage Extraction Method Affect Device Variability?
IEEE J-EDS, vol. 9, pp. 469-475, 2021,
DOI 10.1109/JEDS.2020.3046122.

* CITIUS, Universidade de Santiago de Compostela, Galicia, Spain

Abstract: The gate-all-around nanowire FET (GAA NW FET) is one of the most promising architectures for the next generation of transistors as it provides better performance than current mass-produced FinFETs, but it has been proven to be strongly affected by variability. For this reason, it is essential to be able to characterize device performance which is done by extracting the figures of merit (FoM) using data from the IV curve. In this work, we use numerical simulations to evaluate the effect of the threshold voltage ( VTH ) extraction method on the variability estimation for a gate-all-around nanowire FET. For that, we analyse the impact of four sources of variability: gate edge roughness (GER), line edge roughness (LER), metal grain granularity (MGG) and random discrete dopants (RDD). We have considered five different extraction methods: the second derivative (SD), constant current (CC), linear extrapolation (LE), third derivative (TD) and transconductance-to-current-ratio (TCR). For the ideal non-deformed device at high drain bias, the effect of the extraction technique can lead to a 137 mV difference in VTH and an 89 mV/V difference in the drain-induced-barrier-lowering (DIBL), and when considering GER and LER variability, the influence of the extraction method leads to differences in the standard deviation values of the VTH distribution ( σVTH ) of up to 2.3 and 3.7 mV respectively, values comparable to intrinsic parameter variations. Therefore, the VTH extraction technique presents itself as an additional parameter that should be included in performance comparisons as it can heavily impact the results.

FIG: General capabilities of the FoMPy library [1]. FoMPy is able to import your data into a dataset, and after optional conditioning (data filtering or interpolation) is able to extract and plot some of the most commonly studied FoMs.

This work was supported in part by the Spanish Government under Grant PID2019-104834GB-100 and Grant RYC-2017-23312, and in part by the Xunta de Galicia and FEDER (accreditation 2016–2019) under Grant GRC 2014/008, Grant ED431G/08, and Grant ED431F-2020/008.

REF:
[1] FoMpy: A figure of merit extraction tool for semiconductor device simulations <https://github.com/gabrielesp/FoMpy>
[2] VENDES. A.J.Garcia-Loureiro, N.Seoane, M.Aldegunde, R.Valin, A.Asenov, A.Martinez and K.Kalna “Implementation of the Density Gradient Quantum Corrections for 3-D Simulations of Multigate Nanoscaled Transistors”, IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst, June 2011 doi=10.1109/TCAD.2011.2107990
[3] G.Espiñeira, N.Seoane, D.Nagy, G.Indalecio and A.J.García Loureiro, “FoMPy: A figure of merit extraction tool for semiconductor device simulations” in 2018 Joint International EUROSOI Workshop and International Conference on Ultimate Integration on Silicon (EUROSOI-ULIS) doi:10.1109/ULIS.2018.8354752
[4] G.Espiñeira, D.Nagy, G.Indalecio, A.J.García Loureiro and N.Seoane, “Impact of threshold voltage extraction methods on semiconductor device variability” Solid-State Electronics, Volume 159, 2019, Pages 165-170, https://doi.org/10.1016/j.sse.2019.03.055

Apr 29, 2021

[PhD] VLSI Interconnect Reliability

Shaoyi Peng
Modeling and Simulation Methods for VLSI Interconnect Reliability Focusing 
on Time Dependent Dielectric Breakdown
PhD Dissertation in Electrical Engineering
University of California Riverside
https://escholarship.org/uc/item/966241xk (March 2021)

Abstract: Time dependent dielectric breakdown (TDDB) is one of the important failure mechanisms for Copper (Cu) interconnects that are used in VLSI circuits. This reliability effect becomes more severe as the space between wires is shrinking and low-k dielectric materials (low electrical and mechanical strength) are used. There are many studies and theories focusing on the physics of it. However, there is limited research from the electronics design automation (EDA) perspective on this topic, aiming to evaluate, or alleviate it from the perspective of designing a VLSI chip. This thesis compiles several studies into evaluating TDDB on the circuit level, and engineering methods that help the evaluation. The first work extends the study of a published physics model on simplified yet practical cases. It simplifies the calculation of lifetime by deriving an analytic solution and applying fitting methods. The second study proposes a new way to evaluate lifetime of a chip by extending the models of simple interconnect structures to the complete chip. This method is more robust as it focuses more on a complete chip. However, heavy dependence of finite element method (FEM) makes the flow very slow. The third study adopts machine learning methods to accelerate this slow evaluation process. The proposed method is also applicable to other similar electrostatics applications. Last but not least, the fourth study focuses on a GPU based LU factorization algorithm, which, on a broader aspect, is a universal numerical algorithm used in many different simulation applications, which can be helpful to TDDB evaluations as it can be used in FEM.
Fig: Structure of two copper interconnect wires and the IMD in the cross-section SEM image after TDDB failure [sem]
REF
[sem] N. Suzumura, S. Yamamoto, D. Kodama, K. Makabe, J. Komori, E. Murakami, S. Maegawa, and K Kubota. A new TDDB degradation model based on Cu ion drift in Cu interconnect dielectrics. In IEEE Int. Reliability Physics Symposium (IRPS), pages 26–30, 2006.

Apr 28, 2021

Nanya Technology, the world’s fourth-largest #memory chip manufacturer



from Twitter https://twitter.com/wladek60

April 28, 2021 at 09:44AM
via IFTTT

Apr 26, 2021

Apr 21, 2021

[paper] Physical parameter-based data-driven modeling

Gokhan Satilmis1, Filiz Gunes2, Peyman Mahouti3
Physical parameter-based data-driven modeling of small signal parameters of a metal-semiconductor field-effect transistor
International Journal of Numerical Modelling: Electronic Networks, Devices and Fields 
(IJNM 2020): e2840

1 Department of Electric and Electronic Engineering, Mus¸ Alparslan University, Mus, Turkey
2 Department of Electronics and Communication Engineering, Yıldız Technical University, Istanbul, Turkey
3 Department of Electronic and Automation, Vocational School of Technical Sciences, Istanbul University Cerrahpasa, Istanbul, Turkey


Abstract: In this work, physical parameter-based modeling of small signal parameters for a metal-semiconductor field-effect transistor (MESFET) has been carried out as continuous functions of drain voltage, gate voltage, frequency, and gate width. For this purpose, a device simulator has been used to generate a big dataset of which the physical device parameters included material type, doping concentration and profile, contact type, gate length, gate width, and work function. Five state-of-the-art algorithms: multi-layer perceptron (MLP), IBk, K*, Bagging, and REPTree have been used for creating a regression model. The symbolic regression algorithm has been used to obtain analytical expressions of the real and imaginary parts of the Scattering (S) parameters using the physics-based generated dataset. The regression performances of all the benchmarks and the symbolic regression have been compared to references from the device simulator results. The results of the derived equations and the best algorithms have been then compared to the device simulator results, with case studies for validation. The DC performance characteristics of the MESFET have been also obtained. The proposed model can be used to predict the small signal parameters of new devices prior to development, and allows for both the device and circuit to be optimized for specific applications.

Fig: Input and output parameters used for the MESFET simulations

Acknowledgements: We would like to express our special appreciation and gratitude to the DataRobot Company for providing the software license

#Flying on #Mars fueled with #opensource software



from Twitter https://twitter.com/wladek60

April 20, 2021 at 11:56PM
via IFTTT

Apr 20, 2021

[papers] Compact Modeling

[1] Nicolo Zagni; Simulation and Modeling Methods for Predicting Performance and Reliability Limits of 21st-Century Electronics; PhD Thesis, Universita Degli Estudi Di Modena e Reggio Emilia; Anno Accademico 2019–2020 (CICLO XXXIII)

Abstract: In recent years, a plethora of novel semiconductor devices have started emerging as worthy heirs of Silicon-based transistors – giving rise to the ’post-Moore’ era. Traditional electronics is mostly based on Si devices, – from logic to memory, to high frequency/power and sensing applications – but this paradigm is changing thanks to the developments in different fields ranging from physics and semiconductor materials, to processing techniques and computing architectures. In this hectic new scenario, before even considering a new technology as a replacement of the existing ones, the limiting factors to its performance and reliability need to be well-understood and engineered for. In this sense, simulations and physics-based modeling represent critical tools to make sure that newly conceived technologies stand up to the requirements of 21st century electronics. In this thesis, state-of-the-art simulation and compact modeling tools are exploited to analyze the performance and reliability limits of several emerging technologies. Specifically, this dissertation is focused on four application scenarios and the relative candidate technologies that aim to providing enhanced performance/reliability compared to Si-based counterparts. These are: i) III-V MOSFETs for logic/digital circuits, ii) resistive-RAMs and ferroelectric-FETs for non-volatile memory and in-memory computing, iii) GaN-based high-speed transistors for power applications, and iv) negative capacitance transistors for biosensing.

Fig: Energy bandgap (Eg) vs lattice constant (a) of different semiconductor materials, showing that In0.57Ga0.43As has the same lattice constant as InP. Adapted from: https://www.iue.tuwien.ac.at/phd/brech/diss.htm (visited on 12/20/2020).

[2] G. Maroli, A. Fontana, S. M. Pazos, F. Palumbo and P. Julián, "A Geometric Modeling Approach for Flexible, Printed Square Planar Inductors under Stretch," 2021 Argentine Conference on Electronics (CAE), Bahia Blanca, Argentina, 2021, pp. 61-66, DOI: 10.1109/CAE51562.2021.9397568.

Abstract: In this work a compact model for square planar inductors printed on flexible substrate is proposed. The approach considers the deformation of the metal traces of square spiral inductors when the substrate is subjected to physical stretch. The model considers a typical pi-network for the device, where each component is calculated for different stretching values adapting widely accepted models on the literature for the total inductance, the AC resistance and the ground coupling and inter-wounding capacitances. Model results are contrasted to 3D full electromagnetic wave simulations under parametric sweeps of the dimensions calculated under stretch. Results show good agreement within a 20 % stretch up to the first resonance frequency of the structure. The model can prove useful for the optimization of component design for printed applications on flexible substrates.


[3] H. Kikuchihara et al., "Modeling of SJ-MOSFET for High-Voltage Applications with Inclusion of Carrier Dynamics during Switching," 2021 International Symposium on Devices, Circuits and Systems (ISDCS), Higashihiroshima, Japan, 2021, pp. 1-4, DOI: 10.1109/ISDCS52006.2021.9397904.

Abstract: Demands for higher-voltage MOSFET application are increasing, for which a Super-Junction MOSFET, sustaining the voltages in the range of 500V, has been developed based on the trench-type structure. Due to the huge bias applied, a new leakage-current type is induced during switching, which causes a switching-power-loss increase. Creating a compact model for circuit design, which includes this additional leakage current, is the purpose of the present development. The model describes the depletion-width variation, caused during the switching-on of the device, with the use of the internal node potential, determined accurately by iteration. It is verified, that the new compact model can accurately predict the device performances for different device structures. This capability can be used for device optimization to realize low-power circuitry.




Foundry Wars Begin



from Twitter https://twitter.com/wladek60

April 19, 2021 at 11:59PM
via IFTTT

Apr 19, 2021

[paper] Deep-Learning Assisted Compact Modeling

Hei Kam
Deep-Learning Assisted Compact Modeling of Nanoscale Transistor
CS230 Deep Learning; Stanford University (2021)

Abstract - Transistors are the basic building blocks for all electronics. Accurate prediction of their current-voltage (IV) characteristics enables circuit simulations before the expensive silicon tape-out. In this work, we propose using deep neural network to improve the accuracy for the conventional, physics-based compact model for nanoscale transistors. Physics-driven requirements on the neural network are discussed. Using finite element simulation as the input dataset, together with a neural network with roughly 30 neurons, the final IV model can well-predict the IV to within 1%. This modelling methodologies can be extended for other transistor properties such as capacitance-voltage (CV) characteristics, and the trained model can readily be implemented by the hardware description language (HDL) such as Verilog-A for circuit simulation. The EKV model [1-2] is used as an example. Other transistor models such as BSIM-MG [3] or PSP [4] model can also be used.

Fig: Architecture for the 3-layer neural network together with the aforementioned transformation T. Hyperbolic tangent function tanh(x) is used as the activation function for the input and hidden layers due to its infinite differentiability.

References:
[1] Enz, Christian C., Eric A. Vittoz; "Charge-based MOS transistor modeling." John Wiely & Sons Inc 68 (2006).
[2] FOSS EKV 2.6 Compact Model <https://github.com/ekv26/model>
[3] Khandelwal, Sourabh, et al. "BSIM-IMG: A compact model for ultrathin-body SOI MOSFETs with back-gate control." IEEE Transactions on Electron Devices 59.8 (2012): 2019-2026.
[4] Gildenblat, G., et al. "PSP Model." Department of Electrical Engineering, The Pennsylvania State University and Philips Research, (Aug. 2005)

[Photos] MOS-AK LADEC Mexico April 18, 2021

Arbeitskreis Modellierung von Systemen und Parameterextraktion
Modeling of Systems and Parameter Extraction Working Group
MOS-AK LAEDC Workshop
(virtual/online) April 18, 2021

Together with local Host and LAEDC Organizers as well as all the Extended MOS-AK TPC Committee, we have organized the 3rd subsequent MOS-AK/LAEDC workshop which was the Virtual/Online event. There are a couple of the event photos:

MOS-AK Session 1 (APR.18) begun: 8:00am Mexico time zone (GMT-5)

T_1 FOSSEE eSIM: An open source CAD software for circuit simulation
Kannan Moudgalya
IIT Bombay (IN)

T_2 Memristor modeling
Arturo Sarmiento
INAOE (MX)

T_3 Modeling Issues for CMOS RF ICs
Roberto Murphy, Jose Valdes and Reydezel Torres
INAOE (MX)

T_4 Improving Time-Dependent Gate Breakdown of GaN HEMTs with p-type Gate
E. Sangiorgi, A. Tallarico, N. Posthuma, S. Decoutere, C. Fiegna
Universita di Bologna

MOS-AK Session 2 (APR.18) begun: 1:00pm Mexico time zone (GMT-5)

T_5 Compact Models of SiC and GaN Power Devices
Alan Mantooth, Arman Ur Rashid, Md Maksudul Hossain
University of Arkansas (US)

T_6 New analytical model for AOSTFTs
Antonio Cerdeira
CINVESTAV-IPN, Mexico City (MX)

T_7 On the Parameter Extraction of Thin-Film Transistors in Weak-Conduction
Adelmo Ortiz-Conde
Solid State Electronics Laboratory, Simon Bolivar University, Caracas (VE)

End of MOS-AK Workshop
Group Photo






[ECE Seminar] #GLOBALFOUNDRIES #22nm# FDSOI: Enabling Long Battery Life and Unmatched RF Integration in IOT Systems-on-Chip https://t.co/50X0K1cML2 #semi https://t.co/aCgqVU4SF4



from Twitter https://twitter.com/wladek60

April 19, 2021 at 10:17AM
via IFTTT

Apr 16, 2021

More #wafer #fabs in the #US – When, how? #Intel’s Ocotillo facility in Arizona will be the site where the company will build two new fabs to increase #semi manufacturing capacity in the U.S. [Intel / Electronics360 https://t.co/sBVxQfKqjR] https://t.co/RMYWXx4ZAD



from Twitter https://twitter.com/wladek60

April 16, 2021 at 08:33PM
via IFTTT

Think tank - Stiftung Neue Verantwortung (SNV) : rejuvenate #European #IC design before building a #fab [Bits&Chips https://t.co/9jc6XZ9kJV] #semi https://t.co/3Lj94gk8zn



from Twitter https://twitter.com/wladek60

April 16, 2021 at 11:23AM
via IFTTT

SEL-Silvaco unite to develop #SPICE #CAAC-#IGZO model of oxide semiconductor #FET https://t.co/PjLR4Wm5jX #semi https://t.co/SQJBlzllOi



from Twitter https://twitter.com/wladek60

April 16, 2021 at 10:19AM
via IFTTT

Apr 15, 2021

[paper] GaN-HEMT Compact Model

Ke Li1, Paul Leonard Evans2, Christopher Mark Johnson2, Arnaud Videt3, and Nadir Idir3
A GaN-HEMT Compact Model Including Dynamic RDSon Effect
for Power Electronics Converters
MDPI Energies 2021, 14, 2092.
DOI: 10.3390/en14082092

1 Centre for Advanced Low-Carbon Propulsion Systems, Coventry University, Coventry CV1 2TL, UK
2 Power Electronics, Machines and Control Group, University of Nottingham, Nottingham NG7 2RD, UK;
3 Laboratoire d’Electrotechnique et d’Electronique de Puissance, Université de Lille, France;


Abstract: In order to model GaN-HEMT switching transients and determine power losses, a compact model including dynamic RDSon effect is proposed herein. The model includes mathematical equations to represent device static and capacitance-voltage characteristics, and a behavioural voltage source, which includes multiple RC units to represent different time constants for trapping and detrapping effect from 100 ns to 100 s range. All the required parameters in the model can be obtained by fitting method using a datasheet or experimental characterisation results. The model is then implemented into our developed virtual prototyping software, where the device compact model is co-simulated with a parasitic inductance physical model to obtain the switching waveform. As model order reduction is applied in our software to resolve physical model, the device switching current and voltage waveform can be obtained in the range of minutes. By comparison with experimental measurements, the model is validated to accurately represent device switching transients as well as their spectrum in frequency domain until 100 MHz. In terms of dynamic RDSon value, the mismatch between the model and experimental results is within 10% under different power converter operation conditions in terms of switching frequencies and duty cycles, so designers can use this model to accurately obtain GaN-HEMT power losses due to trapping and detrapping effects for power electronics converters.
Fig: GaN-HEMT device structure and its compact model

Acknowledgments: The authors would like to acknowledge Loris Pace for technical discussions and experimental support. This research was funded by the UK Engineering and Physical Sciences Research Council (EPSRC) through research grant [EP/K035304/1 and EP/R004390/1] and French State Region Plan Contract Intelligent Integrated Energy Converter (CPER-CE2I) project.

#RaspberryPi4 owners can now train their own custom models using Edge Impulse's cloud-based development platform for #machine #learning on edge devices https://t.co/Ge30t4tdmN #semi https://t.co/baPQdajRrk



from Twitter https://twitter.com/wladek60

April 15, 2021 at 10:39AM
via IFTTT

Apr 13, 2021

[mos-ak] [Final Program] 3rd MOS-AK LAEDC Workshop (virtual/online) April 18, 2021

Arbeitskreis Modellierung von Systemen und Parameterextraktion 
Modeling of Systems and Parameter Extraction Working Group
MOS-AK LAEDC Workshop
(virtual/online) April 18, 2021

Together with local Host and LAEDC Organizers as well as all the Extended MOS-AK TPC Committee, we have the pleasure to invite to the 3rd subsequent MOS-AK/LAEDC workshop which will be Virtual/Online event. Scheduled, MOS-AK/LAEDC workshop, aims to strengthen a network and discussion forum among experts in the field, enhance open platform for information exchange related to compact/SPICE modeling and Verilog-A standardization, bring people in the compact modeling field together, as well as obtain feedback from technology developers, circuit designers, and TCAD/EDA tool developers and vendors.

The MOS-AK workshop program is available online: 
https://www.mos-ak.org/mexico_2021/

Venue: Virtual/Online MOS-AK Workshop - APRIL 18, 2021
  • Session 1 (APR.18) begins: 8:00am Mexico time zone (GMT-5)
  • Session 2 (APR.18) begins: 1:00pm Mexico time zone (GMT-5)
Online Free Registration is open, now:
https://forms.gle/PQgZk9td3Jeb4MWZ9
Registered participants will receive online meeting invitation 24h before the event. Any related enquiries can be sent to <wladek@mos-ak.org>

Postworkshop Publications: Selected best MOS-AK technical presentation will be recommended for further publication in a special Solid State Electronics (SSE) issue on compact modeling.

W.Grabinski on the behalf of International MOS-AK Committee
WG13042021

--
You received this message because you are subscribed to the Google Groups "mos-ak" group.
To unsubscribe from this group and stop receiving emails from it, send an email to mos-ak+unsubscribe@googlegroups.com.
To view this discussion on the web visit https://groups.google.com/d/msgid/mos-ak/CALp-Rj8OWMvfqudPuDxVTCpSmy67415oD0%2BnxVdZaxZzdv5gwA%40mail.gmail.com.

[paper] Performance limits of hBN as an insulator for scaled CMOS

Theresia Knobloch1, Yury Yu. Illarionov1,2, Fabian Ducry3, Christian Schleich4, Stefan Wachter5, Kenji Watanabe6, Takashi Taniguchi7, Thomas Mueller5, Michael Waltl4, Mario Lanza8, Mikhail I. Vexler2, Mathieu Luisier3 and Tibor Grasser1
The performance limits of hexagonal boron nitride as an insulator for scaled CMOS devices based on two-dimensional materials
Nature Electronics; Vol 4; Feb.2021; pp.98–108;
DOI: 10.1038/s41928-020-00529-x

1. Institute for Microelectronics, TU Wien, Vienna, Austria.
2. Ioffe Institute, St Petersburg, Russia.
3. Integrated Systems Laboratory, ETH Zürich, Zurich, Switzerland.
4. Christian Doppler Laboratory for Single-Defect Spectroscopy in Semiconductor Devices at the Institute for Microelectronics, TU Wien, Vienna, Austria.
5. Institute for Photonics, TU Wien, Vienna, Austria.
6. Research Center for Functional Materials, National Institute for Matierals Science, Tsukuba, Japan.
7. International Center for Materials Nanoarchitectonics, National Institute for Materials Science, Tsukuba, Japan.
8. Physical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia.


Abstract: Complementary metal–oxide–semiconductor (CMOS) logic circuits at their ultimate scaling limits place extreme demands on the properties of all materials involved. The requirements for semiconductors are well explored and could possibly be satisfied by a number of layered two-dimensional (2D) materials, such as transition metal dichalcogenides or black phosphorus. The requirements for gate insulators are arguably even more challenging. At present, hexagonal boron nitride (hBN) is the most common 2D insulator and is widely considered to be the most promising gate insulator in 2D material-based transistors. Here we assess the material parameters and performance limits of hBN. We compare experimental and theoretical tunnel currents through ultrathin layers (equivalent oxide thickness of less than 1 nm) of hBN and other 2D gate insulators, including the ideal case of defect-free hBN. Though its properties make hBN a candidate for many applications in 2D nanoelectronics, excessive leakage currents lead us to conclude that hBN is unlikely to be suitable for use as a gate insulator in ultrascaled CMOS devices.
Fig: Comparison of gate insulators for ultrascaled CMOS devices based on 2D materials. a.) Currents at constant EOT for 3D oxides and layered insulators. The leakage currents as calculated with the Tsu–Esaki model are given for 3D amorphous oxide and 2D layered insulators at a constant thickness of EOT=0.76nm. If no tunnel masses were known, the free-electron mass was used. The filled circles indicate the results of ab initio calculations and the dotted line connecting the circles is a guide to the eye. b.) Currents at constant EOT for native oxides and fluorides. The leakage currents are given for native oxides and ionic fluorides at a constant thickness of EOT=0.76nm.

Acknowledgements: T.K., Y.Y.I. and T.G. acknowledge the financial support through FWF grant numbers I2606-N30, I4123-N30 and P29119-N35. Y.Y.I. and M.I.V. acknowledge financial support by the Ministry of Science and Higher Education of the Russian Federation under project number 075-15-2020-790. F.D. and M. Luisier thank CSCS for giving them access to the Piz Daint supercomputer under project number s876. C.S. and M.W. gratefully acknowledge financial support by the Austrian Federal Ministry for Digital and Economic Affairs and the National Foundation for Research, Technology and Development and the Christian Doppler Research Association. The computational results presented have been achieved in part using the Vienna Scientific Cluster (VSC). S.W. and T.M. acknowledge financial support through the Graphene Flagship number 785219 and number 881603. K.W. and T.T. acknowledge support from the Elemental Strategy Initiative conducted by the MEXT, Japan, number JPMXP0112101001, JSPS KAKENHI grant number JP20H00354 and the CREST(JPMJCR15F3), JST. M. Lanza acknowledges support from the Ministry of Science and Technology of China (grant numbers 2018YFE0100800, 2019YFE0124200) and the National Natural Science Foundation of China (grant number 61874075).

[papers] Compact Modeling

[1] Zhang, Yuanke, Tengteng Lu, Wenjie Wang, Yujing Zhang, Jun Xu, Chao Luo, and Guoping Guo. "Characterization and Modeling of Native MOSFETs Down to 4.2 K." arXiv:2104.03094 (2021).

Abstract: The extremely low threshold voltage (VTH) of native MOSFETs (VTH≈0 V @ 300 K) is conducive to the design of cryogenic circuits. Previous research on cryogenic MOSFETs mainly focused on the standard threshold voltage (SVT) and low threshold voltage (LVT) MOSFETs. In this paper, we characterize native MOSFETs within the temperature range from 300 K to 4.2 K. The cryogenic VTH increases up to ∼0.25 V (W/L = 10 µm/10 µm) and the improved subthreshold swing (SS) ≈ 14.30 mV/dec @ 4.2 K. The off-state current (IOFF) and the gate-induced drain leakage (GIDL) effect are ameliorated greatly. The step-up effect caused by the substrate charge and the transconductance peak effect caused by the energy quantization in different subbands are also discussed. Based on the EKV model, we modified the mobility calculation equations and proposed a compact model of large size native MOSFETs suitable for the range of 300 K to 4.2 K. The mobility-related parameters are extracted via a machine learning approach and the temperature dependences of the scattering mechanisms are analyzed. This work is beneficial to both the research on cryogenic MOSFETs modeling and the design of cryogenic CMOS circuits for quantum chips.
Fig: I-V curves of native MOSFETs with W/L= 10/10µm measured (symbol) and calculated (solid line) at various temperatures. (a) Acomparison of the calculation results between this model and the  EKV2.6 model at 77K and 4.2K. (b) Measurement and calculation results of  the output characteristic at 4.2 K.

[2] Qixu Xie  Guoyong Shi; An analytical gm/ID‐based harmonic distortion prediction method for multistage operational amplifiers; Int J Circ Theor Appl. 2021; 1– 27. DOI: 10.1002/cta.3012

Abstract: An analytical stage‐based harmonic distortion (HD) analysis method for multistage operational amplifiers (Op Amps) is developed in this work. This work contributes two fundamental methods that make the analytical HD prediction possible at the circuit level. Firstly, we propose that the traditionally used first order small‐signal transistor quantities gm (transconductance) and go (output conductance) in the gm/ID design methodology for bulk complementary metal‐oxide‐semiconductor (CMOS) technology can be extended to the higher order quantities gm(k) and go(k) (k=1,2,3). With proper normalization, these quantities become neutral to the device dimensions and operation currents, hence can be precharacterized by sweeping simulations and used as lookup tables. Secondly, we further develop analytical nonlinearity expressions for a set of commonly used amplifier stages, represented as the functions of the nonlinearity parameters gm(k) and go(k) of the transistors that form a stage circuit. A combination of these two fundamental methods on hierarchical nonlinearity modeling enables us to apply the existing analytical HD estimation methods for the stage‐form macromodels to predict the circuit‐level HD behavior, overcoming the need of running repeated simulations under device resizing and rebiasing. The proposed harmonic distortion analysis method has been validated by application to real multistage amplifiers, achieving HD prediction results in excellent agreement to fully transistor‐level circuit simulation results but with substantial speedup.

Apr 12, 2021

White House to zero in on #chip shortage in meeting with company officials



from Twitter https://twitter.com/wladek60

April 12, 2021 at 05:22PM
via IFTTT

[Neal Freyman] Chips Wanted



from Twitter https://twitter.com/wladek60

April 12, 2021 at 01:58PM
via IFTTT

The lack of #semi manufacturing in #Europe



from Twitter https://twitter.com/wladek60

April 12, 2021 at 12:05PM
via IFTTT

[euresearch.ch] Are you ready for the ERC?

 
 
In Focus: Are you ready for the ERC?
 

Horizon Europe will fully take off in a few weeks but the first ERC calls are already out. Typical ERC, you could say, always at the forefront of the Framework Programmes. The next ERC call, the Advanced Grant, is expected to open on 20 May with a deadline on 31 August. What are your ERC plans?

 

2021 is a special year for the ERC: It was not possible for the first calls to open in 2020 and there are no Synergy Grant or Proof of Concept Grant calls in the 2021 Work Programme. These two calls are expected back in the 2022 Work Programme. The Proof of Concept will even have 2 calls with a total of 4 cut-off dates, giving PIs for whom 2021 would have been the last chance to apply the possibility to submit a proposal. These plans as well as tentative opening and closing dates for the other calls were recently communicated by the ERC. In terms of call timelines, 2022 will be the last transition year. With Work Programme 2023, calls are expected to be back to the usual schedule (i.e. Starting Grant closing around October, Consolidator Grant in February, Advanced Grant in summer, and Synergy Grant in November).

Make sure you consider the best time in your career for a proposal submission and schedule in sufficient time for proposal writing. For Starting and Consolidator Grant applicants, it is not necessarily towards the end of the eligibility window. Statistics show that the success rate does not increase substantially with additional years post PhD. To get started, talk with ERC grantees and your peers, and check out the "ERC classes" videos.

Dear readers, these are my last recommendations as a National Contact Point for ERC. After 14 years, I am leaving Euresearch and taking off for new horizons. It was a great pleasure for me to support so many ERC applicants in Switzerland. To work with talented researchers and to see world class research projects develop was truly inspiring. Thank you for your trust and good luck with your ERC plans!

Katja Wirth, National Contact Point for ERC / Member of the Euresearch Management Board

Alexandra Rosakis, Illustration

Impressum
 
Euresearch Communication, com@euresearch.ch
Euresearch, Belpstrasse 11, CH-3007 Bern, Tel +41 31 380 60 00

Disclaimer: We assume no responsibility for the content, accuracy, timeliness, reliability or completeness of the information, nor for references and links to third-party websites.© 2021 Euresearch


                                                           

[C4P] IEEE NMDC 2021 - abstracts due 15-April


16th IEEE Nanotechnology Materials and Devices Conference

October 17th to 20th, 2021 | Vancouver, BC, Canada


Website: https://ieeenmdc.org/nmdc-2021
CALL for PAPERS (download PDF)

Short Abstract (text only) Submission Deadline: April 15, 2021


The IEEE Nanotechnology Council is pleased announce the First Call for Papers for the 16th IEEE Nanotechnology Materials and Devices Conference (IEEE NMDC 2021) which will be co-located with the IEEE Conference on Electrical Insulation and Dielectric Phenomena (IEEE CEIDP) sponsored by the IEEE Dielectrics and Electrical Insulation Society (DEIS). 

Recognizing that plans for this in-person conference could be affected by circumstances related to COVID-19, updates will be provided at IEEE NMDC 2021.

Important Dates:

Special Session and Workshop/Tutorial Proposals Deadline: March 31, 2021
Short Abstract (text only) Submission Deadline: April 15, 2021
Regular, Special Session and Invited Papers Submission Deadline: May 31, 2021 
Late Breaking News Extended Abstract Submission Deadline: August 10, 2021

See the Call for Papers page here.
 

Information for Authors including Submission Instructions and requirements can be found on these pages.


Message sent to IEEE Nanotechnology Council interest list.

Copyright © 2021 IEEE Nanotechnology Council 

Apr 9, 2021

RT: 16bit CPU for the HP 9825 computer

Apr 7, 2021

#Cycling is ten times more important than electric cars for reaching #net-zero cities https://t.co/0Rxbm2Ygt1 #semi https://t.co/lrtHaI1u4N



from Twitter https://twitter.com/wladek60

April 07, 2021 at 09:28PM
via IFTTT

[papers] compact modeling

Rabnawaz Sarmad Uqaili, Faraz Bashir Soomro, Junaid Ahmed Uqaili, Ahsin Murtaza Bughio 
and Khalid Ali Khan
Study on Compact Equivalent Circuit Model for RF CMOS Transistor 
International Journal of Scientific & Technology Research 
Vol.10, Issue 02, February 2021 ISSN 2277-8616

Abstract: In this study, a physical-based radio-frequency (RF) compact equivalent circuit model (CECM) for complementary metal-oxidesemiconductor (CMOS) transistor and its parameter extraction is presented. The whole structure of CECM that includes a small-signal equivalent circuit model of the transistor, a MOSFET small-signal substrate model, an input and output ground-signal-ground (GSG) pad model, a pad coupling model and a metal interconnection model are briefly studied and discussed. Based on this study, a complete test structure model for RF CMOS is designed and the initial values of parameters are extracted by using the analytical method. The multi-bias scattering parameters (S-Parameters) of model correspondence to the experimentation are validated up to 66 GHz and 220 GHz respectively. A good agreement has been achieved between the simulation and experimental under multi-bias conditions.
Fig: Complete CECM for RF CMOS transistor with an entire test structure.


El Mashade, Mohamed B., and Ahmed Abdel Monem
Transient model for modern microelectronic devices applicable to EKV PMOS model 
Radioelectronics and Communications Systems 
Vol.64, no. 2 (2021): 64-79

Abstract: Massive advances in microelectronic manufacturing technology with an exponential growth of their complexity and speed are needed to ensure a continuous development of novel techniques, structures, devices, circuits and systems. This paper is intended for the introduction of a new PMOS transient model for modern microelectronic devices that provides a fast transient response. Such suggested model expresses the transient terminal currents as polynomial functions of the normalized channel charge densities at the channel bounds with the assistance of a modified version of the cubic spline collocation methodology in symmetrical telescopic fashion. Additionally, the optimum number of segments, which is suitable for the new version of the cubic spline collocation algorithm, is investigated. Moreover, the normalized channel charge density at collocation points is modeled in terms of its values at the channel bounds through the quasi-static approach. Furthermore, by means of introducing an inverse function for the normalized overdrive channel voltage, the transient terminal currents are formulated as a function of the terminal voltages. In comparison with usual cubic spline collocation structure, the novel model has much better accuracy in its application to EKV structure. The developed model has been applied to the standard 0.15 mm technology and validated by MATLAB R2014a. The obtained results demonstrate that it gives a very high degree of relative accuracy, on average of 99%, for the total time and exhibits absolute error of less than 5% of the maximum value, in its worst case.


Rakeshkumar Mahto and Reshma John 
Modeling of Photovoltaic Module 
(April 1st 2021)
DOI: 10.5772/intechopen.97082. 

Abstract: A Photovoltaic (PV) cell is a device that converts sunlight or incident light into direct current (DC) based electricity. Among other forms of renewable energy, PV-based power sources are considered a cleaner form of energy generation. Due to lower prices and increased efficiency, they have become much more popular than any other renewable energy source. In a PV module, PV cells are connected in a series and parallel configuration, depending on the voltage and current rating, respectively. Hence, PV modules tend to have a fixed topology. However, in the case of partial shading, mismatching or failure of a single PV cell can lead to many anomalies in a PV module’s functioning. If proper attention is not given, it can lead to the forward biasing of healthy PV cells in the module, causing them to consume the electricity instead of producing it, hence reducing the PV module’s overall efficiency. Hence, to further the PV module research, it is essential to have an approximate way to model them. Doing so allows for understanding the design’s pros and cons before deploying the PV module-based power system in the field. In the last decade, many mathematical models for PV cell simulation and modeling techniques have been proposed. The most popular among all the techniques are diode based PV modeling. In this book chapter, the author will present a double diode based PV cell modeling. Later, the PV module modeling will be presented using these techniques that incorporate mismatch, partial shading, and open/short fault. The partial shading and mismatch are reduced by incorporating a bypass diode along with a group of four PV cells. The mathematical model for showing the effectiveness of bypass diode with PV cells in reducing partial shading effect will also be presented. Additionally, in recent times besides fixed topology of series–parallel, Total Cross-Tied (TCT), Bridge Link (BL), and Honey-Comb (H-C) have shown a better capability in dealing with partial shading and mismatch. The book chapter will also cover PV module modeling using TCT, BL, and H-C in detail.

Available: https://www.intechopen.com/online-first/modeling-of-photovoltaic-module


#Intel to try to become a #foundry, AGAIN?

 



from Twitter https://twitter.com/wladek60

April 07, 2021 at 02:02PM
via IFTTT

[paper] Compact Modeling as a Bridge between Technologies and ICs


Compact Modeling as a Bridge 
between Scaled Semiconductor Technologies and Advanced Designs of the Integrated Circuits
AB Bhattacharyya and Wladek Grabinski
IETE Journal of Research 58(3):179-180 (May 2012)
DOI: 10.4103/0377-2063.97322

Abstract: The quality of the integrated circuits analysis, required in present contemporary design flows, is directly linked to the accuracy of its basic components—the Compact Model/Simulation Program with Integrated Circuit Emphasis (SPICE) Model. The compact/SPICE modeling is an essential research activity bridging scaled semiconductor technologies and advanced designs of the integrated circuits. To enable complete access to the new advanced semiconductor technologies, the designers have to frequently update their Computer-Aided Design (CAD) tools with accurate definition of the semiconductor device models that can be implemented into the CAD circuit simulators. The models must preferably be physics-based to account for complex dependencies of the device properties and defined in standard, high-level language, i.e., Verilog-A, to simplify access and implementation into the CAD tools. For the state of the art advanced CMOS technologies (analog, HV, SOI), both modeling and characterization are challenging tasks that will be emphasized in this special issue of Compact Modeling. (REF) Compact Modeling as a Bridge between Scaled Semiconductor Technologies and Advanced Designs of the Integrated Circuits. 

Available from: <http://www.mos-ak.org/india/>
and https://www.researchgate.net/publication/278384752_Compact_Modeling_as_a_Bridge_between_Scaled_Semiconductor_Technologies_and_Advanced_Designs_of_the_Integrated_Circuits

Apr 6, 2021

What China is to #India, #USA is to #China



from Twitter https://twitter.com/wladek60

April 06, 2021 at 03:28PM
via IFTTT

[C4P] DevIC 2021

DevIC 2021: Call for Papers

DevIC 2021 Logo

IEEE KGEC Student Branch Chapter in association with Department of ECE, KGEC, technically co-sponsored by IEEE EDS Kolkata Chapter  organizes International conference 4th Int. Conference DevIC 2021 “Devices for Integrated Circuit (DevIC)”.  There will be keynote lectures/talks, tutorials, and oral presentations  by eminent researchers. The conference organizers invite original papers in the research areas of various aspects of semiconductor technology and circuits that creates an opportunity to symbiosis on topic ranging from process technology to system-on-chip. Articles announcing significant and original results are highly requested. Papers are solicited across the general field of electronic devices. Topics of interest include, but are not limited to;
  • CMOS Processes, Devices and Integration;
  • VLSI Technology and Circuits;
  • Innovative Systems;
  • Emerging Non-CMOS Devices & Technologies;
  • Device Modelling & Simulation; 
  • Device Characterization, Reliability & Yield; 
  • Devices with New material systems;
  • Devices for Low power applications;
  • Low dimensional devices;
  • Low dimensional Semiconductors; 
  • Design and Simulation of Circuits with nanoscale devices;
  • MEMS, Sensors & Display Technologies;
  • Advanced & Emerging Memories; 
  • High frequency wireless communication;