Showing posts with label Emerging technology. Show all posts
Showing posts with label Emerging technology. Show all posts

Sep 5, 2023

[paper] VNWFET-based technology

VNWFET-based technology: from device modelling to standard cell library
Sara Mannaa, Cedric Marchand, Damien Deleruyelle, Bastien Deveautour, 
Ian O’Connor, Alberto Bosio
2023 IEEE 23rd International Conference on Nanotechnology (NANO),
Jeju City, S.Korea, 2023, pp. 576-581
DOI: 10.1109/NANO58406.2023.10231288

Univ Lyon, ECL, INSA Lyon, CNRS, UCBL, CPE Lyon, INL, UMR5270, 69130 Ecully, France

Abstract: Vertical Nanowire Field Effect Transistors (VNWFETs) are an emerging technology with significant potential to reduce footprint and consequently interconnect capacitance, thereby achieving improved energy-efficiency and being naturally compatible with advanced 3D integration approaches. However, while initial estimations have focused on projections and estimations, no work has so far used a detailed compact model to attempt accurate transistor-level simulations for standard cell library characterization, thus enabling logic synthesis. In this paper, we propose a design flow to make the link from an existing (laboratory-scale) VNWFET technology and the associated compact model, to standard static logic cell design and characterization, and ultimately logic synthesis. To the best of our knowledge, this is the first work to prove the possibility of such a realistic design flow tailored to VNWFET technologies.

Fig: Through actual VNWFET fabrication setting up a design-technology co-optimization (DTCO) approach, the FVLLMONTI vision is to develop regular 3D stacked hardware layers of NNs empowering the most efficient machine translation thanks to fine-grain hardware / software co-optimisation.

Acknowledgment: This work has been founded by FVLLMONTI European Union’s Horizon 2020 research and innovation programme under grant agreement No 101016776.

Apr 7, 2021

[paper] Compact Modeling as a Bridge between Technologies and ICs


Compact Modeling as a Bridge 
between Scaled Semiconductor Technologies and Advanced Designs of the Integrated Circuits
AB Bhattacharyya and Wladek Grabinski
IETE Journal of Research 58(3):179-180 (May 2012)
DOI: 10.4103/0377-2063.97322

Abstract: The quality of the integrated circuits analysis, required in present contemporary design flows, is directly linked to the accuracy of its basic components—the Compact Model/Simulation Program with Integrated Circuit Emphasis (SPICE) Model. The compact/SPICE modeling is an essential research activity bridging scaled semiconductor technologies and advanced designs of the integrated circuits. To enable complete access to the new advanced semiconductor technologies, the designers have to frequently update their Computer-Aided Design (CAD) tools with accurate definition of the semiconductor device models that can be implemented into the CAD circuit simulators. The models must preferably be physics-based to account for complex dependencies of the device properties and defined in standard, high-level language, i.e., Verilog-A, to simplify access and implementation into the CAD tools. For the state of the art advanced CMOS technologies (analog, HV, SOI), both modeling and characterization are challenging tasks that will be emphasized in this special issue of Compact Modeling. (REF) Compact Modeling as a Bridge between Scaled Semiconductor Technologies and Advanced Designs of the Integrated Circuits. 

Available from: <http://www.mos-ak.org/india/>
and https://www.researchgate.net/publication/278384752_Compact_Modeling_as_a_Bridge_between_Scaled_Semiconductor_Technologies_and_Advanced_Designs_of_the_Integrated_Circuits

Jul 15, 2020

[paper] Power Side-Channel Attacks in NCFET

Knechtel, Johann, Satwik Patnaik, Mohammed Nabeel, Mohammed Ashraf,
Yogesh S. Chauhan, Jörg Henkel, Ozgur Sinanoglu, and Hussam Amrouch
Power Side-Channel Attacks in Negative Capacitance Transistor (NCFET)
IEEE Micro, DOI 10.1109/MM.2020.3005883
Preprint arXiv:2007.03987 (2020)

Abstract: Side-channel attacks have empowered bypassing of cryptographic components in circuits. Power side-channel (PSC) attacks have received particular traction, owing to their non-invasiveness and proven effectiveness. Aside from prior art focused on conventional technologies, this is the first work to investigate the emerging Negative Capacitance Transistor (NCFET) technology in the context of PSC attacks. We implement a CAD flow for PSC evaluation at design-time. It leverages industry-standard design tools, while also employing the widely-accepted correlation power analysis (CPA) attack. Using standard-cell libraries based on the 7nm FinFET technology for NCFET and its counterpart CMOS setup, our evaluation reveals that NCFET-based circuits are more resilient to the classical CPA attack, due to the considerable effect of negative capacitance on the switching power. We also demonstrate that the thicker the ferroelectric layer, the higher the resiliency of the NCFET-based circuit, which opens new doors for optimization and trade-offs.

Fig: (a) NCFET structure,with ferroelectric layer integrated inside the transistor’s gate stack;
(b) Equivalent caps series, where the internal voltage exhibits a greater voltage (Vint  > VG)

Acknowledgments: This work was supported in part by the Center for Cyber Security (CCS) at New York University Abu Dhabi (NYUAD). The work of Satwik Patnaik was supported by the Global Ph.D. Fellowship at NYU/NYUAD. Besides, parts of this work were carried out on the HPC facility at NYUAD.