Showing posts with label ngspice. Show all posts
Showing posts with label ngspice. Show all posts

May 11, 2023

OpenPDK Networking Workshop


OpenPDK, OpenTooling and Open Source Design
An Initiative to Push Development
Date:
Networking Workshop FMD-QNC on 27-28 June 2023
Location:
IHP; Im Technologiepark 25; 15236 Frankfurt (Oder)
Contact:
Sergei Andreev; Phone: +49 335 5625 523
Free Registration: 




The workshop is organised by IHP and FMD (Research Fab Microelectronics Germany) within the framework of the FMD-QNC Project.

Within the project FMD-QNC analog circuit design with open source software shall be enabled. For this purpose, both the open source design tools and a process design kit of the semiconductor technology used must support the entire design flow with sufficient quality. IHP provides its 130 nm BiCMOS technology SG13G2 for open source design. This technology is particularly suited for high frequency and mixed signal design applications. While basic tool support already exists for digital circuit design, it is still very rudimentary for analog designs and especially for high frequency designs. A considerable effort has to be put into the development of the design tools as well as into the creation of the technology specific Process Design Kit (PDK).

The 2-day workshop is intended to promote exchange and networking between tool developers, the PDK developers at IHP and designers. Tool developers are to present the capabilities of the tools as well as planned enhancements. Designers are to present ideas that can be used for training chip designers. Requirements for open source design tools for digital design, mixed signal design, and high frequency design are to be highlighted.

Discussions will identify and prioritize gaps for a complete design flow in the open source tools and PDK. The workshop will thus help to concrete the planning for the Open Design Platform and to create a roadmap for future work.

Presentation

Presenter/Institution

Timeline

Day 1

Welcome by coordinator FMD-QNC

Dr. Andreas Bruning
Research Fab Microelectronics Germany

9:00-9:10

Introduction FMD-QNC project status and IHP OpenPDK Roadmap

Dr. Rene Scholz
IHP

9:10-9:30

Status OpenPDK and OpenTooling for SG13G2 BiCMOS technology

Sergei Andreev
IHP

9:30-10:00

An Ultra-Low-Power High-Density Wireless Biomedical Sensing System

 

Prof. Harald Pretl
Johannes Kepler University Linz

10:00-10:30

Teaching digital design by using open-source EDA tools

Prof. Steffen Reith
Rhein Main University of Applied Sciences

10:30-11:00

Coffee break

11:00-11:40

CMOS Rail-to-Rail Operational Amplifier for HPGe Radiation Detector

Prof. Herman Jalli Ng
Karlsruhe University of Applied Sciences

11:40-12:10

Design-flow approaches for mmWave and sub-THz integrated transceiver circuits for radar and communication

Sasha Breun
FAU Erlangen

 

12:10-12:40

Lunch break 

12:40-13:40

TBD

Dr. Frank K. Gurkaynak
ETH Zurich

13:40-14:10

TBD

Joachim Hebeler
Karlsruhe Institute of Technology

14:10-14:40

Coffee break

14:40-15:10

 TBD

Prof.  Dietmar Kissinger
Ulm University

15:10-15:40

LibMan - an easy way to manage your open source design flow

Dr. Anton Datsuk
IHP

15:40-16:10

Get together (Barbecue)

 

17:00-…

Day 2

ngspice - status and future developments

Prof. Holger Vogt

9:00-9:20

DMT - Python Toolkit for Device Modeling

Mario Krattenmacher
SemiMod

9:20-9:40

OpenVAF - Next Generation Verilog-A Compiler with ngspice integration

Mario Krattenmacher
SemiMod

9:40-10:00

Coffee break

10:00-10:40

Best practices for implementing and optimizing KLayout DRC and LVS decks

Matthias Köfferlein


10:40-11:00

Generating DRC and LVS Runsets for KLayout

Dr. Andreas Krinke
TU Dresden

11:00-11:20

OpenEMS in open source EDA

Jan Taro Svejda
University of Duisburg-Essen

11:20-11:40

Lunch break

11:40-12:40

Panel discussion on the roadmap – open source tools for IC design

Topics:

  • Digital design flow
  • Analog design flow
  • Challenges in RF design

Dr. Norbert Herfurth
IHP

Panelists: TBD

12:40-14:10

Feb 13, 2023

FOSS Verilog-A Models Repository


Dietmar Warning, ngspice team, has announced his new github project VA-Models repository 
<https://github.com/dwarning/VA-Models>

These Verilog-A model code repository is a compilation of the most important models in the state of public FOSS availability. The intention is to have one place for model access and a platform for discussion and integration into simulators.

At the moment, the models will be compiled by script with openVAF and checked with ngspice version 39. Code changes are introduced only for convergence support or to fulfill Verilog-A language standard requirements. Model equations are untouched. But I am open to integrate code modifications for other compiler/simulator companions as far they are inline with actual LRM 2.4. Simple test case are provided, mainly to show general functionality of the compiled models. 

Don't hesitate to contact Dietmar Warning, ngspice team, if there is something wrong, especially in kind of legal aspects. All the contributions are welcome.

Jan 30, 2023

[paper] Zener diode compact modeling and simulation

Modelling and simulation of Zener diode noise in the time domain
International Journal of Numerical Modelling Electronic Networks Devices and Fields
January 2023
DOI: 10.1002/jnm.3090

1 Centre for Communications Technology, London Metropolitan University, London, UK.

Abstract: This paper presents a new time domain Zener diode compact model for transient noise simulation. SPICE2 and SPICE3 use piece-wise linear time dependent sources for generating complex waveforms. This approach is not practical when applied to randomly generated noise. Today, through on-going improvements to freely available Circuit simulation tools, SPICE noise generation has moved to a new level. Ngspice, for example, computes white Gaussian noise ‘on-the-fly' as transient Simulation progresses. The proposed model has a simple behavioral structure that supports time domain shot, flicker, and thermal noise. The physical properties of the proposed model are introduced in the second section. This is followed by an evaluation of model performance in the third and fourth sections, including static DC, dynamic Charge, and transient noise characterization. Finally, the fifth section summarizes the conclusions of the research.
FIG: QuCS-S/Ngspice Zener diode behavioural model: subcircuit schematic drawing; intermediate equations and limexp function definition.

DATA AVAILABILITY STATEMENT: Data Sharing not applicable to this article as no datasets were generated or analyzed during the current study.


Jul 8, 2021

[paper] eSim: An Open Source EDA Tool

Rahul Paknikar, Saurabh Bansode, Gloria Nandihal, Madhav P. Desai, Kannan M. Moudgalya, 
and Ashutosh Jha*
eSim: An Open Source EDA Tool for Mixed-Signal and Microcontroller Simulations
4th International Conference on Circuits, Systems and Simulation
(ICCSS), 2021, pp. 212-217,
DOI: 10.1109/ICCSS51193.2021.9464198.

Indian Institute of Technology Bombay, Mumbai, Maharashtra, India
* Vellore Institute of Technology Chennai, Tamil Nadu, India


Abstract: The ability to carry out simulations before making a PCB can save a lot of time, effort and cost. This work explains the creation of an open source mixed-signal simulation software eSim that will be of great help to students, hobbyists, the SME sector and startups. Analog and digital components are respectively modelled using SPICE and a hardware descriptive language in eSim. Inclusion of AVR based microcontroller as a part of the digital circuit is demonstrated through its instructions implemented as a C code library. This methodology could be used to provide support to other microcontroller families, such as PIC, STM and also more sophisticated controllers. These concepts are demonstrated through a few examples.
Fig: Workflow of NGHDL

Acknowledgment: The authors would like to thank Prof. Pramod Murali, Department of Electrical Engineering, IIT Bombay and Mrs. Usha Viswanathan, FOSSEE, IIT Bombay for their guidance. We would also like to express our gratitude towards Powai Labs Technology Private Limited for their gratis contribution to the VHPIDIRECT package and Utility package of NGHDL. The FOSSEE project is funded by the National Mission on Education through ICT, Ministry of Education, Govt. of India.





May 25, 2021

Circuit Design and Simulation Marathon using eSIM

 

Indian Institute of Technology, Bombay

We are happy to announce the first ever #Circuit #Design and #Simulation #Marathon using #eSim! This event is jointly organized by #FOSSEE and VLSI System Design. The FOSSEE project developed at Indian Institute of Technology, Bombay is powered by MINISTRY OF EDUCATION, GOVERNMENT OF INDIA.

To know more about the Circuit Design and Simulation Marathon, please visit https://hackathon.fossee.in/esim/

Important dates:
>> Registration: 21 May 2021 - 15 June 2021
>> Marathon Launch : 17 June 2021

Jan 20, 2020

Qucs-S as R&D design software

Qucs-S 

is not a simple circuit simulator, but also a research software. Please cite your R&D articles, if you are using Qucs-S in your research.

Documentation

Publications

Qucs-S is not a simple circuit simulator, but also a research software. Please cite our articles, if you are using Qucs-S in your research.
  1. Brinson, M. E., and Kuznetsov, V. (2016) A new approach to compact semiconductor device modelling with Qucs Verilog-A analogue module synthesis. Int. J. Numer. Model., 29: 1070-1088. (BibTeX)
  2. D. Tomaszewski, G. Głuszko, M. Brinson, V. Kuznetsov and W. Grabinski, "FOSS as an efficient tool for extraction of MOSFET compact model parameters," 2016 MIXDES - 23rd International Conference Mixed Design of Integrated Circuits and Systems, Lodz, 2016, pp. 68-73. (BibTeX)
  3. M. Brinson and V. Kuznetsov, "Qucs-0.0.19S: A new open-source circuit simulator and its application for hardware design," 2016 International Siberian Conference on Control and Communications (SIBCON), Moscow, 2016, pp. 1-5. (BibTeX)
  4. M. Brinson and V. Kuznetsov, "Improvements in Qucs-S equation-defined modelling of semiconductor devices and IC's," 2017 MIXDES - 24th International Conference "Mixed Design of Integrated Circuits and Systems, Bydgoszcz, 2017, pp. 137-142. (BibTeX)
  5. M. Brinson and V. Kuznetsov, "Extended behavioural device modelling and circuit simulation with Qucs-S" International Journal of Electronics, 2017, pp.1 - 14 (BibTeX)

Feb 3, 2019

GnuCap and ngspice at 2019 FOSDEM DevRoom CAD and Open Hardware

Today at #FOSDEM: Felix Salfelder presenting "#Gnucap -- The GNU circuit analysis package Architecture, Algorithms and Applications" addressing Compact Model license considerations
"https://buff.ly/2CeG4DV"


Holger Vogt presenting "#ngspice, current status and future developments" pointing to an obstacle in FOSS CAD/EDA adoption: The newer and more complex Libs/PDKs often come along with encrypted model files.
"https://buff.ly/2DR0Fz6"


Nov 26, 2017

[paper] Recent Developments in Qucs-S Equation-Defined Modelling of Semiconductor Devices and IC’s

Recent Developments in Qucs-S Equation-Defined Modelling of Semiconductor Devices and IC’s
Mike Brinson, and Vadim Kuznetsov
International Journal of Microelectronics and Computer Science
2017, Volume 8, Number 1 
ISSN 2080-8755 / eISSN 2353-9607

Abstract—The Qucs Equation-Defined Device was introduce roughly ten years ago as a versatile behavioural simulation component for modelling the non-linear static and dynamic properties of passive components, semiconductor devices and IC macromodels. Today, this component has become an established element for building experimental device simulation models. It’s inherent interactive properties make it ideal for device and circuit modelling via Qucs schematics. Moreover, Equation-Defined Devices often promote a clearer understanding of the factors involved in the construction of complex compact semiconductor simulation models. This paper is concerned with recent advances in Qucs-S/Ngspice/XSPICE modelling capabilities that improve model construction and simulation run time performance of Equation-Defined Devices using XSPICE model syntheses. To illustrate the new Qucs-S modelling techniques an XSPICE version of the EPFL EKV v2.6 long channel transistor model together with other illustrative examples are described and their performance simulated with Qucs-S and Ngspice [read more...]

Fig: EKV2.6 Qucs-S long channel static I/V model test bench and typical simulated I/V output characteristics as Qucs-S Equation-Defined Model



Aug 23, 2017

Modeling and simulation of biological systems using SPICE language

Morgan Madec1, Christophe Lallement1, Jacques Haiech2
1ICube, UMR7357, CNRS / Université de Strasbourg, France
2LIT, UMR 7200, CNRS / Université de Strasbourg, France
Published: August 7, 2017
doi: 10.1371/journal.pone.0182385

Abstract: The article deals with BB-SPICE (SPICE for Biochemical and Biological Systems), an extension of the famous Simulation Program with Integrated Circuit Emphasis (SPICE). BB-SPICE environment is composed of three modules: a new textual and compact description formalism for biological systems, a converter that handles this description and generates the SPICE netlist of the equivalent electronic circuit and NGSPICE which is an open-source SPICE simulator. In addition, the environment provides back and forth interfaces with SBML (System Biology Markup Language), a very common description language used in systems biology. BB-SPICE has been developed in order to bridge the gap between the simulation of biological systems on the one hand and electronics circuits on the other hand. Thus, it is suitable for applications at the interface between both domains, such as development of design tools for synthetic biology and for the virtual prototyping of biosensors and lab-on-chip. Simulation results obtained with BB-SPICE and COPASI (an open-source software used for the simulation of biochemical systems) have been compared on a benchmark of models commonly used in systems biology. Results are in accordance from a quantitative viewpoint but BB-SPICE outclasses COPASI by 1 to 3 orders of magnitude regarding the computation time. Moreover, as our software is based on NGSPICE, it could take profit of incoming updates such as the GPU implementation, of the coupling with powerful analysis and verification tools or of the integration in design automation tools (synthetic biology).

GeNeDA results from the collaboration between three laboratories:
The Laboratory of Engineering Sciences, Computer Sciences and Imaging, ICube, UMR7357, CNRS / Université de Strasbourg, France (Morgan MADEC, Yves GENDRAULT, Elise ROSATI and Christophe LALLEMENT)
The Laboratory of Therapeutic Innovation, LIT, UMR 7200, CNRS / Université de Strasbourg, France (Jacques HAIECH)
The Laboratory of Computer Sciences of Paris 6, LIP6, UMR7606, CNRS / Université Pierre et Marie Curie, Paris, France (François PECHEUX)

Relared papers has been published recently
[1] M. Madec, F. Pêcheux, Y. Gendrault, E. Rosati, C. Lallement and J. Haiech, "GeNeDA: An Open-Source Workflow for Design Automation of Gene Regulatory Networks Inspired from Microelectronics", Journal of Computational Biology, June 2016. doi:10.1089/cmb.2015.0229.
[2] M. Madec et al., "Reuse of Microelectronics Software for Gene Regulatory Networks Design Automation", 1st international conference of the GDB BioSynSys, Paris (FR), Sept. 2016.
[3] M. Madec et al., "EDA inspired Open-source Framework for Synthetic Biology", IEEE 2013 BioCAS Conference, Rotterdam (NL), Nov. 2013.

Feb 28, 2017

[ngspice] FM Bugger Circuit

Project Summary by https://www.eeweb.com
The project circuit design is a FM Bugger circuit. It works like a transmitter that transmits and projects information signals into the air wherein a FM radio will act as a receiver which would receive the transmitted signal. The circuit and the FM radio must be tuned-in with the same frequency to be able to transmit and receive information in the same channel. The FM bugger circuit is originally designed to be used like a spy gadget to eavesdrop other people’s conversations. Though it is designed that way, it is pretty much useful as a transmitter or as a walkie-talkie to relay messages in a distance [read more...]

Testing and Design Procedure
The FM bugger circuit is tested using PartSim and the NGSpice to test the output of the circuit:


FM Bugger Circuit Simulation
R1 Net1009 Mic 22K
R2 Net1009 Net1016 47K
R3 Net1003 0 33K
C1 Net1016 Mic 1NF
C2 Net1016 0 1NF
C3 Net1002 Net1003 4.7pF
C4 Net1002 Antenna 1NF
C5 Net1009 0 22NF
C6 Net1009 Net1002 50pF
L1 Net1009 Net1002 9NH
Q1 Net1002 Net1016 Net1003 2N2222
V1 Net1009 0 3V
V2 Mic 0 SINE ( 1 1 20Khz 0.0S )
R4 0 Antenna 1K
.options rshunt = 1.0e12 KEEPOPINFO
.MODEL 2N2222 NPN IS =3.0611E-14 NF =1.00124
+ BF =220 IKF=0.52 VAF=104 
+ ISE=7.5E-15 NE =1.41 NR =1.005 BR =4 
+ IKR=0.24 VAR=28 ISC=1.06525E-11 NC =1.3728 RB =0.13 
+ RE =0.22 RC =0.12 CJC=9.12E-12 MJC=0.3508 VJC=0.4089 
+ CJE=27.01E-12 TF =0.325E-9 TR =100E-9
.control
OP
write Net1002 Net1003 Net1009 Net1016 Mic Antenna I(V1) I(V2)
set appendwrite true
rusage everything
.endc
.end
Conclusion
The simulation of the FM bugger circuit in PartSim shows that the circuit is working. The microphone was assumed to have an input of a 20 kHz sinusoidal wave. Then, the output signal at the load, R4 assumed to be the antenna for the circuit, turns out to produce a FM signal. Therefore, the FM bugger circuit itself has a great possibility to succeed and operate in real

Project Links:
http://www.schematics.com/embed/fm-bugger-circuit-36638/
http://www.pcbweb.com/projects/DqEwZcNdcy3ddghPnJefdJIzTcWqLd



Feb 16, 2017

HiSIM-HV and HiSIM2 implemented into ngspice

ngspice (Open Source SPICE Circuit Simulator) supports latest versions of HiSIM_HV and HiSIM2 [read more...]
REF: 
[2] T. Ezaki, D. Navarro, Y. Takeda, N. Sadachika, G. Suzuki, M. Miura-Mattausch, H. Mattausch, T. Ohguro, T. Iizuka, M. Taguchi, S. Kumashiro, and S. Miyamoto, “Non-quasi-static Analysis with HiSIM, a Complete Surface-potential-based MOSFET Model”, Proceedings of the 12 th International Conference on Mixed Design of Integrated Circuits and Systems (MIXDES’2005), 923-928 (2005.6), Invited Paper
[3] M. Miura-Mattausch, D. Navarro, Y. Takeda, H.J. Mattausch, T. Ohguro, T. Iizuka, M. Taguchi and S. Miyamoto, “MOSFET Modeling for RF Circuit Era”, Proceedings of the 11 th International Conference on Mixed Design Mixed Design of Integrat ed Circuits and Systems (MIXDES’2004), 62-66 (2004), Invited Paper
[5] Mattausch,  H.J.;  Umeda,  T.;  Kikuchihara,  H.;  Miura-Mattausch,  M.,  "The  HiSIM compact models of high-voltage/power semiconductor devices for circuit simulation," in Solid-State and Integrated Circuit Technology (ICSICT), 2014 12th IEEE International Conference on , vol., no., pp.1-4, 28-31 Oct. 2014
[6] Mattausch,  H.J.;  Miyake,  M.;  Ii zuka,  T.;  Kikuchihara,  H.;  Miura-Mattausch,  M.,  "The Second-Generation  of  HiSIM_HV  Compact  Models  for  High-Voltage  MOSFETs,"  in Electron Devices, IEEE Transactions on , vol.60, no.2, pp.653-661, Feb. 2013

Oct 14, 2016

FOSDEM 2017 EDA Devroom Call for Participation



This is the call for participation in the FOSDEM 2017 devroom on Free/Open Source Software (FOSS) Electronic Design Automation (EDA) tools, to be held on Sunday 5 February 2017 in Brussels, Belgium. We are looking for contributions under the form of talks and tutorials covering the following main topics:
  • Printed Circuit Board (PCB) design tools (e.g. KiCad and gEDA)
  • Analogue and digital simulators (e.g. ngspice, Qucs, Gnucap, Xyce, GHDL, Icarus and Verilator)
  • Any other EDA tools such as high-level tools for digital hardware design (e.g. Migen) and HDL synthesis tools (e.g.Yosys)
  • Inter-project opportunities for collaboration
We hope to provide an opportunity for attendees to bring themselves up to date on the latest FOSS EDA developments, share knowledge and identify opportunities to collaborate on development tasks. Have a look at last year's event for a taste of what the EDA devroom is about.

The submission process
Please submit your proposals at 
before 1 December 2016.

If you already have a Pentabarf account (for example as a result of having submitted a proposal in the past), make sure you use it to log in and submit your proposal. Do not create a new account if you already have one. Please provide a bit of information about yourself under Person -> Description -> Abstract. When you submit your proposal (creating an "Event" in Pentabarf), make sure you choose the "Electronic Design Automation (EDA) devroom" in the track drop-down menu. Otherwise your proposal might go unnoticed. Fill in at least a title and abstract for the proposed talk and a suggested duration. Bear in mind that a lot of the value in these meetings comes from the discussions, so please be reasonable regarding the duration of the talk.

Important dates
  • 1 December 2016: deadline for submission of proposals
  • 11 December 2016: announcement of final schedule
  • 5 February 2017: devroom day
Recordings
The FOSDEM organisers hope to be able to live-stream and record all the talks. The recordings will be published under the same licence as all FOSDEM content (CC-BY). Only presentations will be recorded, not informal discussions and whatever happens during the lunch break. By agreeing to present at FOSDEM, you automatically give permission to be recorded. The organisers will agree to make exceptions but only for exceptional and well-reasoned cases.
Mailing list

Feel free to subscribe to the mailing list of the EDA devroom to submit ideas, ask questions and generally discuss about the event.

Spread the word!
This is the third EDA devroom at FOSDEM. The first two were very well received. Let's make sure as many projects and developers as possible are present. Thanks!

Oct 29, 2015

[Call for Participation] FOSDEM 2016 Electronic Design Automation Devroom

 Call for Participation 
FOSDEM 2016 Electronic Design Automation Devroom 

This is the call for participation in the FOSDEM 2016 devroom on Free/Open Source Software (FOSS) Electronic Design Automation (EDA) tools, to be held on Saturday 30 January 2016 in Brussels, Belgium. We are looking for contributions under the form of talks covering the following main topics:
  • Printed Circuit Board (PCB) design tools (e.g. KiCad and gEDA)
  • Analogue and digital simulators (e.g. ngspice, Qucs, Gnucap, Xyce, GHDL, Icarus and Verilator)
  • Any other EDA tools such as high-level tools for digital hardware design (e.g. Migen)
  • Inter-project opportunities for collaboration
We hope to provide an opportunity for attendees to bring themselves up to date on the latest FOSS EDA developments, share knowledge and identify opportunities to collaborate on development tasks. Have a look at last year's event for a taste of what the EDA devroom is about.
The submission process
Please submit your proposals at https://penta.fosdem.org/submission/FOSDEM16 
before 4 December 2015.

If you already have a Pentabarf account (for example as a result of having submitted a proposal in the past), make sure you use it to log in and submit your proposal. Do not create a new account if you already have one. Please provide a bit of information about yourself under Person -> Description -> Abstract. When you submit your proposal (creating an "Event" in Pentabarf), make sure you choose the "EDA devroom" in the track drop-down menu. Otherwise your proposal might go unnoticed. Fill in at least a title and abstract for the proposed talk and a suggested duration. Bear in mind that a lot of the value in these meetings comes from the discussions, so please be reasonable regarding the duration of the talk.
Important dates
  • 4 December 2015: deadline for submission of proposals
  • 18 December 2015: announcement of final schedule
  • 30 January 2016: devroom day

Nov 10, 2014

i-MOS version 201410 release

  New release of the interactive Modeling and On-line Simulation Platform (i-MOS), version 201410 has been released. In this release we have launched some new features:
  • Developing an ‘Equalizer’ module in the ‘Model’ page for easy model parameter tuning
  • Accommodating multiple parameters in this module for users’ most convenience
  • Improving the ‘Custom data’ function for manual parameter extractions
  • Updating the TFET model e-TIM (previous e-TuT) to support multiple materials
  • Including an am-bipolar current module in the e-TIM
The new  release is ready here i-MOS.

Jul 16, 2014

[SISPAD] Compact Modeling Worksops - Enabling Better Insight of Device Features - Monday, September 8, 2014


 SISPAD Compact Modeling Workshop
 Enabling Better Insight of Device Features 
 Monday, September 8, 2014

 Workshop Program

09:15 - 09:20: Opening 

09:20 - 10:00: J. Takeya (University of Tokyo, Japan): invited Physics of Charge Transport in Organic Field-Effect Transistors
10:00 - 10:40: C. Jungemann (RWTH Aachen University, Germany): invited Validity of Macroscopic Noise Models in the Case of High-Frequency Bipolar Transistors
10:40 - 11:00: break
11:00 - 11:40: N. Goldsman (University of Maryland, USA): invited Key Issues in the Modeling of SiC Electronic Devices
11:40 - 12:10: C. Ma (Hiroshima University, Japan): invited Universal Model of the Negative Bias Temperature Instability (NBTI) Effect for Circuit Aging Simulation

12:10 - 12:30: poster presentations
  • P. X. Tran (International University, Vietnam) A Comprehensive Model for the Changing I-V Characteristics of raphene Transistors 
  • M. Ghittorelli, F. Torricelli, Z. M. Kovacs-Vajna, and L. Calalongo (University of Brescia, Italy) Accurate Modeling of Amorphous Indium-Gallium-Zinc-Oxide TFTs Deposited on Plastic Foil 
  • S. Sato, Y. Omura, and A. Mallik (Kansai University, Japan) Proposal of Simple Channel-Length-Dependent Current Model for Subthreshold Region of Nano-Wire Tunnel FET 
  • H. Miyamoto, H. Zenitani, H. Kikuchihara, H. J. Mattausch, M. Miura-Mattausch, and T. Nakagawa (HU & AIST, Japan) Consistent Compact Modeling of MOSFETs from Bulk to Double-Gate Structures
12:30 - 13:50: lunch

13:50 - 14:30: D. Warning (Creative Chips GmbH, Germany): invited NGSPICE – an Open Platform for Modeling and Simulation
14:30 - 15:00: A. Schaldenbrand (Cadence Design Systems, Japan): invited Benefits of Verilog-A for Behavioral Modeling and Compact Modeling
15:00 - 15:30: P. Lee (Micron Memory Japan, Inc.): invited Compact Model Coalition: World-Wide Model Standardization for an Expanding Industry

15:30 - 15:40: break

15:40 - 16:00: F. Torricelli, M. Ghittorelli, M. Rapisarda, L. Mariucci, S. Jacob, R. Coppard, E. Cantatore, Z. M. Kovacs-Vajna, and L. Colalongo (Unviersity of Brescia, Italy) Analytical Drain Current Model of Both p- and n-Channel OTFTs for Circuit Simulation
16:00 - 16:20: T. Nakagawa, T. Sekigawa, M. Hioki, Y. Ogasahara, H. Koike, H. Zenitani, H. Miyamoto, H. Kikuchihara, H. J. Mattausch, M. Miura-Mattausch, H. Oda, and N. Sugii (AIST, HU, LEAP, Japan) Parameter-Extraction Strategy of Ultra-Thin Silicon and BOX Layer MOSFETs for Low Voltage Applications
16:20 - 16:40: T. Mizoguchi, T. Naito, Y. Kawaguchi, and W. Hatano (Toshiba, Japan) Compact Modeling of GaN-MISFET for Power Applications
16:40 - 17:00: T. Yamamoto and H. Kato (Denso, Japan) Analysis and Modeling of Injection Enhanced Insulated Gate Bipolar Transistor

17:00: Closing