Showing posts with label model. Show all posts
Showing posts with label model. Show all posts

Dec 20, 2023

[paper] PSP RF Model

Xiaonian Liu1, 2, and Yansen Liu1, 2
Scalable PSP RF Model for 0.11 µm MOSFETs
Progress In Electromagnetics Research Letters, Vol. 113, 43–51, 2023

1 School of Physics and Electronics, Hunan Normal University, Changsha 410081, China
2 Key Laboratory of Physics and Devices in Post-Moore Era, College of Hunan Province, Changsha 410081, China.

Abstract: An accurate, efficient and scalable SPICE model is essential for modern integrated circuits design, especially for radio frequency (RF) circuit design. A PSP based scalable RF model is extracted and verified in 0.11 µm CMOS manufacturing process. The S parameter measurement system and open-short de-embedding technique is applied. The macro-model equivalent subcircuit and parameters extraction strategy are discussed. The extracted model can match the de-embedded S parameters data well. By combining the model parameters’ dependencies on each geometry quantity, the scalable expression of parameters with all geometry quantities included can be obtained. This work can be a reference for the RF MOSFETs modeling and RF circuit design.

Fig: The PSP RF subcircuit model and its S-par s fitting
results of NMOS with Wf = 2 µm, Lf = 0.12 µm, nf = 16

Acknowledgment: This work is supported by the National Natural Science Foundation of China under Grant 62204083, and the Youth Fund of Education Department of Hunan Province under Grant 21B0057.

Nov 13, 2023

[paper] PSP RF Model

Xiaonian Liu1, 2 and Yansen Liu1
A Scalable PSP RF Model for 0.11 µm MOSFETs
Progress In Electromagnetics Research Letters, Vol. 113, 43–51, 2023
DOI :10.2528/PIERL23081405

1 School of Physics and Electronics, Hunan Normal University, Changsha 410081, China.
2 Key Laboratory of Physics and Devices in Post-Moore Era, College of Hunan Province, Changsha 410081, China.


Abstract : An accurate, efficient and scalable SPICE model is essential for modern integrated circuits design, especially for radio frequency (RF) circuit design. A PSP based scalable RF model is extracted and verified in 0.11 CMOS manufacturing process. The S parameter measurement system and open-short de-embedding technique is applied. The macro-model equivalent subcircuit and parameters extraction strategy are discussed. The extracted model can match the de-embedded S parameters data well. By combining the model parameters’ dependencies on each geometry quantity, the scalable expression of parameters with all geometry quantities included can be obtained. This work can be a reference for the RF MOSFETs modeling and RF circuit design.

Fig: The RF PSP Model Subcircuit

Acknowledgment : This work is supported by the National Natural Science Foundation of China under Grant 62204083, and the Youth Fund of Education Department of Hunan Province under Grant 21B0057.



Jul 20, 2023

[paper] THz FET Modeling

Adam Gleichman1, Kindred Griffis1, and Sergey V. Baryshev1,2
Useful Circuit Analogies to Model THz Field Effect Transistors
arXiv:2307.07488v1 [physics.app-ph] 14 Jul 2023

1) Department of Electrical and Computer Engineering, Michigan State University, USA
2) Department of Chemical Engineering and Materials Science, Michigan State University, USA

Anstract: The electron fluid model in plasmonic field effect transistor (FET) operation is related to the behavior of a radio-frequency (RF) cavity. This new understanding led to finding the relationships between physical device parameters and equivalent circuit components in traditional parallel resistor, inductor, and capacitor (RLC) and transmission models for cavity structures. Verification of these models is performed using PSpice to simulate the frequency dependent.
FIG: RLC Lumped THz FET Model


Dec 28, 2021

[paper] Model for TFT Used in a CMOS Inverter Amplifier

Adelmo Ortiz-Condea, CarlosÁvila-Avendañob, Jesús A.Caraveo-Frescasb, Manuel A.Quevedo-Lópezb and Francisco J.García-Sáncheza
A polylogarithmic model for thin-film transistors used in a CMOS inverter amplifier
Solid-State Electronics
Volume 188, February 2022, 108218
DOI: 10.1016/j.sse.2021.108218
   
a Solid State Electronics Laboratory, Universidad Simón Bolívar, Caracas 1080, Venezuela
b Materials Science and Engineering Department, University of Texas at Dallas, Richardson, TX 75080, USA


Abstract: This article presents a generalization of a transregional polylogarithmic model, previously proposed for continuously describing the transfer characteristics of polycrystalline and amorphous Thin Film Transistors (TFTs) at all levels of inversion. The present generalization entails including the necessary drain voltage dependencies to be able to describe also the output characteristics. The model is tested by using it in the design and analysis of a CMOS inverter amplifier consisting of poly-Si n- and p-channel TFTs fabricated at low temperature and pressure. The transistors are biased below threshold so that the CMOS amplifier circuit operates in weak conduction, having in mind energy saving considerations. The validity of the proposed model has been ascertained by comparing model simulations to actual measured data from individual poly-Si TFTs and from the CMOS amplifier circuit. The simulations of the CMOS inverter amplifier are compared to the results obtained using look-up table-type simulations.

Fig: Normalized current with respect to its maximum value versus gate bias for two different values of drain bias (top). The curve for the higher drain bias (blue dash line) is shifted to the right of that for the lower drain bias (red continuous line), indicating that VT increases as VDS increases. The corresponding Y function versus gate bias (bottom) illustrates a similar increase of VT with VDS. 

Acknowledgment: The authors would like to thank the reviewers and the editor for their valuable work, which has led to a significant improvement in the quality of this article.


Aug 30, 2021

Generalized EKV Compact MOSFET Model

On the Explicit Saturation Drain Current in the Generalized EKV Compact MOSFET Model
Francisco J. García-Sánchez, Life Senior Member, IEEE,
and Adelmo Ortiz-Conde, Senior Member, IEEE
IEEE TED Aug 9. 2021
DOI: 10.1109/TED.2021.3101186

*Solid State Electronics Laboratory, Universidad Simón Bolívar, Caracas 1080, Venezuela


Abstract: We present and discuss explicit closed-form expressions for the saturation drain current of short channel metal-oxide-semiconductorfield-effect transistors (MOSFETs) with gate oxide and interface-trapped charges, and including carrier velocity saturation, according to the generalized Enz-Krummenacher-Vittoz (EKV) MOSFET compact model. The normalized saturation drain current is derived as an explicit function of the normalized terminal voltages by solving the transcendental voltage versus charge equation using the Lambert W function. Because this special function is analytically differentiable, other important quantities, such as the transconductance and the transconductance-to-currentratio, can be readily expressed as explicit functions of the terminal voltages.
Fig: Comparison of simulated transfer characteristics with (red lines and symbols) and another without (black lines and symbols) radiation-induced oxide and interface-trapped charges. Calculation of VGB versus IDsat (lines) comes from denormalization and the explicit IDsat versus VGB (symbols) comes from denormalization of the proposed explicit expressions




Feb 18, 2020

33rd IEEE ICMTS, Edinburgh, Scotland.

IEEE 33rd International Conference on Microelectronic Test Structures
April 6-9, 2020, Edinburgh, Scotland

It is our great pleasure to invite you to the 33rd IEEE International Conference on Microelectronic Test Structure (ICMTS) which will be held April 6-9, 2020, in Edinburgh, Scotland.  
 
ICMTS is the leading measurement and characterisation conference for micro- and nano-fabrication processes including integrated circuits, photonics, and micro- and nano-system technologies.
 
Registration for the conference is now open at the conference website: http://www.icmts.net/conf_reg 
 
For advance prices please register for the conference before the 24th of February.  
 
ICMTS 2020
South Hall Complex
The University of Edinburgh
Pollock Halls, 18 Holyrood Park Road 
Edinburgh, EH16 5AR
Scotland, UK
 
 
Hotel booking information is also available:  http://www.icmts.net/hotel_reg  
 
Tutorials: April 6, 2020
Conference: April 7 - 9, 2020
 
Please contact the conference organisers at icmts@ed.ac.uk for more information.
 
Find the ICMTS group on LinkedIn https://www.linkedin.com/groups/3804498/ 
Follow us on Twitter at https://twitter.com/IEEE_ICMTS