Showing posts with label DC. Show all posts
Showing posts with label DC. Show all posts

Oct 26, 2023

[chapter] Extraction for a 65nm FG Transistor.

[chapter] Cong, T.D., Hoang, T. (2023). A Methodology of Extraction DC Model for a 65 nm Floating-Gate Transistor. 

In: Dao, NN., Thinh, T.N., Nguyen, N.T. (eds) Intelligence of Things: Technologies and Applications. ICIT 2023. Lecture Notes on Data Engineering and Communications Technologies, vol 187. Springer, Cham. https://doi.org/10.1007/978-3-031-46573-4_19
AbstractFloating-gate Metal-Oxide Semiconductor (MOS) has been investigated and applied in many applications such as artificial intelligence, analog mixed-signal, neural networks, and memory fields. This study aims to propose a methodology for extracting a DC model for a 65 nm floating-gate MOS transistor. The method in this work uses the combination architecture of MOS transistor, capacitance, and voltage-controlled voltage source which can archive a high accuracy result. Moreover, the advantage of the method is that the MOS transistor was a completed model which enhances the flexibility and accuracy between a fabricated device and modeled architecture. In our work, the industrial standard model Berkeley Short-channel IGFET Model (BSIM) 3v3.1, level 49 was deployed, and the DC simulation was obtained with the use of LTspice tool.

Jan 12, 2022

[paper] Pseudo-morphic PHEMT: Numerical Simulation Study

Khaouani Mohammed, Hamdoune Abdelkader, Guen Ahlam Bouazza, Kourdi Zakarya, Hichem Bencherif
An Improved Performance of Al0.25Ga0.75N/AlN/GaN/Al0.25Ga0.75N Pseudo-morphic High Electron Mobility Transistor (PHEMT): 
Numerical Simulation Study
IC-AIRES 2021. Lecture Notes in Networks and Systems, vol 361. Springer
DOI: 10.1007/978-3-030-92038-8_80




1. Hassiba Benbouali, Chlef, Algeria
2. University of Abou-Bakr Belkaid, Tlemcen, Algeria
3. Center Exploitation Satellite Communications Agency of Space Oran, Algeria
4. University of Mostefa Benboulaid, Batna, Algeria 

Abstract: In this paper a 9nm T-shaped gate length, Pseudo-morphic High Electron Mobility Transistor (pHEMT AlGaN/AlN/GaN/AlGaN) is studied; we use TCAD software. DC, AC and RF performances assessment allow to exhibit interesting results such as a maximum drain current IDSmax=35mA at VGS=0V, a knee voltage Vknee=0.5V with ON-resistance Ron=0.8Ω-mm, a sub-threshold swing of 75mV/decade, a maximum transconductance value gm=160mS/mm, a DIBL of 36mV/V, a drain lag of 8.5%, a cut-off frequency of 110GHz, a maximum oscillation frequency of 800GHz, and very suitable breakdown voltage VBR of 53.1V. This device can be used in radar, high power and amplifier applications.


May 11, 2020

Conference Paper Reached 500 Reads

Wladek 
Wladek Grabinski, Daniel Tomaszewski, Farzan Jazaeri, Anurag Mangla, Jean-Michel Sallese, Maria-Anna Chalkiadaki, Antonios Bazigos, and Matthias Bucher
FOSS EKV 2.6 Parameter Extractor
22nd International MIXDES Conference, pp. 181-186 (2015)

Abstract: The design of advanced integrated circuits (IC) in particular for low power analog and radio-frequency (RF) application becomes more complex as the device level modeling confronting challenges in micro- and nano-meter CMOS processes. As present CMOS technologies continue geometry scaling the designers can benefit using dedicated SPICE MOSFET models and apply specific analog design methodologies. The EKV was developed especially to meet altogether the analog/RF design requirements. This paper describes a basic set of the DC parameter extraction steps for the EKV 2.6 model. The free open source software (FOSS) Profile2D tool was used to illustrate an accurate EKV 2.6 DC extraction strategy. 


Mar 6, 2018

ENBIOS-2D Lab

Aldi Hoxha1, Paolo Scarbolo1, Andrea Cossettini2, Federico Pittino3, Luca Selmi4
1. DPIA, Università degli Studi di Udine 2. University of Udine 3. Università di Udine 4
DPIA, Università degli Studi di Udine, Italy

Abstract: ENBIOS-2D Lab is a tool to illustrate and to study simple Ion Sensitive Field Effect Transistor structures in two dimensions. Together with its companion tool ENBIOS-1D Lab, it is meant for use as a teaching tool in support of undergraduate or graduate courses on the basic physics of transduction in ion and particle sensors, and to assist early stage researchers getting familiar with some basic concepts in the field. At the present stage, ENBIOS-2D Lab supports simulation and visualization of DC I-V characteristics, impedance/admittance spectra as well as DC and AC potential/carrier/ion distributions in simple two-dimensional ISFET structures. A broader set of case studies will become available with future releases of the tool. The companion ENBIOS-1D Lab tool offers the possibility to simulate simple Electrolyte/Insulator/Semiconductor systems in one-dimension. The physical system is modelled with the Poisson/Boltzmann (DC) and Poisson/Nernst/Planck - Poisson/Drift/Diffusion (AC small signal) equations coupled to the site-binding charge model equations at the Electrolyte/Insulator interfaces. Dedicated models are implemented for the frequency and salinity dependence of the electrolyte electrical permittivity and the temperature dependence of the ions' mobility (in water solvent). ENBIOS-2D Lab is powered by ENBIOS, (Electronic Nano-BIOsensor Simulator), a general purpose three-dimensional Control Volume Finite Element Method (CVFEM) simulator developed in-house at the University of Udine - Italy. ENBIOS simulates in three dimensions (3D) the DC and AC small signal impedance response to ions and micro/nanoparticles of three-dimensional devices made of semiconductor, insulator and electrolyte materials.
References:

[1] P. Scarbolo, E. Accastelli, F. Pittino, T. Ernst, C. Guiducci, L. Selmi, “Characterization and modelling of differential sensitivity of nanoribbon-based pH-sensors”, Proceedings of the 2015 Transducers - 18th International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS), 21-25 June 2015, pp. 2188-2191

[2] Paolo Scarbolo, Enrico Accastelli, Thomas Ernst, Carlotta Guiducci and Luca Selmi, "Analysis of Dielectric Microbead Detection by Impedance Spectroscopy with Nanoribbons", IEEE Nano Conference, August 2016.

[3] Federico Pittino and Luca Selmi, "Use and comparative assessment of the CVFEM method for Poisson–Boltzmann and Poisson–Nernst–Planck three dimensional simulations of impedimetric nano-biosensors operated in the DC and AC small signal regimes", Comput. Methods Appl. Mech. Engrg., v.278, (2014), pp.902–923.


May 25, 2016

[Summer Tutorial] Verified Measurements for Successful Device Models

 Verified Measurements for Successful Device Models 
 at IHP in Frankfurt (Oder), June 15-17, 2016 

Good electronic device modeling results depend directly on reliable, qualified and verified measurements. It is a known fact that problems with device models are – to a big part – rather due to measurement problems. Within the measurement chain of DC, Impedance (CV), S-Parameter, Nonlinear RF, and Noise, there are several challenges to overcome like device self-heating, contact resistance, max. applicable RF power, calibration, de-embedding etc.

IHP Summer Tutorial will take place at IHP in Frankfurt (Oder), June 15-17, 2016. It will cover in detail all these measurement domains, will explain the setups, the data verification methods, the traps to be avoided, and give best-practice recommendations and examples. It will be enhanced by live measurements in IHP’s measurement labs.

As a wrap-up, an introduction into device modeling, applying the qualified and verified measurements, will be given at the end.

Who should attend: Semiconductor manufacturing and measurement engineers, device modeling engineers, scientists and students working/interested in measurement techniques.


Jun 29, 2015

QUCS: Project of the Week, June 1, 2015

 The Qucs is one of the featured projects for the week (June 1, 2015), which appear on the front page of SourceForge.net:

 Qucs is a circuit simulator with a graphical user interface. The software aims to support all kinds of circuit simulation types such as, e.g. DC, AC, S-parameter, Transient, Noise, and Harmonic Balance analysis. Pure digital simulations are also supported.
[ Download Quite Universal Circuit Simulator ]