Dec 1, 2020

[paper] THz characterization and modeling of SiGe HBTs

Sebastien Fregonese, Marina Deng, IEEE member, Marco Cabbia, Chandan Yadav*, IEEE member, Magali De Matos, and Thomas Zimmer, Senior Member, IEEE
THz characterization and modeling of SiGe HBTs
review (invited)
IEEE J-EDS, 2020, pp.1-1 
DOI:10.1109/JEDS.2020.3036135
hal-03014869

IMS Laboratory, University of Bordeaux (F)
*Department of Electronics and Communication Engineering, National Institute of Technology Calicut (IN)


Abstract: This paper presents a state-of-art review of on-wafer S-parameter characterization of THz silicon transistors for compact modelling purpose. After, a brief review of calibration/deembedding techniques, the paper focuses on the on-wafer calibration techniques and especially on the design and dimensions of lines built on advanced silicon technologies. Other information such as the pad geometry, the ground plane and the floorplan of the devices under test are also compared. The influence of RF probe geometry on the coupling with the substrate and adjacent structures is also considered to evaluate the accuracy of the measurement, especially using EM simulation methodology. Finally, the importance of measuring above 110 GHz is demonstrated for SiGe HBT parameter extraction. The validation of the compact model is confirmed thanks to an EM-spice cosimulation that integrates the whole calibration cum deembedding procedure.
Fig: EM probe models based on Picoprobe GGB (a) 1 GHz -110 GHz, (b) WR5, (c) WR3 and d) WR2.2. In all models, white=coaxial insulator, gray=solder, yellow=metal.

A complete description of probe topology and technology is given in:
A. Rumiantsev et R. Doerner; RF Probe Technology: History and Selected Topics; IEEE Microw. Mag., vol. 14, no 7, p. 46‑58, Nov. 2013, DOI: 10.1109/MMM.2013.2280241

Aknowledgement: This work is partly funded by the French Nouvelle-Aquitaine Authorities through the FAST project. The authors also acknowledge financial support from the EU under Project Taranto (No. 737454). The authors would like to thank STM for supplying the silicon wafer.


No comments: