Showing posts with label GaN. Show all posts
Showing posts with label GaN. Show all posts

Oct 3, 2019

[paper] Gallium Nitride FET Model

Gallium Nitride FET Model
V V Orlov, G I Zebrev
National Research Nuclear University MEPHI, Moscow, Russia
E-mail: gizebrev@mephi.ru

Abstract: We have presented an analytical physics-based compact model of GaN power FET, which can accurately describe the I-V characteristics in all operation modes. The model considers the source-drain resistance, different interface trap densities and self-heating effects. (read more 
https://arxiv.org/ftp/arxiv/papers/1909/1909.05702.pdf)

Introduction: Gallium nitride (GaN) high electron mobility transistor (HEMT) technology has many advantages, that make it a promising candidate for high-speed power electronics. It allows high-power operation at much higher frequencies than silicon laterally diffused metal-oxide-semiconductor field-effect transistors (LDMOSFETs), currently a staple for the cellular base station industry [1]. The high breakdown voltage capability (over 100 V), high electron mobility, and high-temperature performance of GaN HEMTs are the main factors for its use in power electronics applications. Circuits design in both application regimes requires the accurate compact device models that can describe the non-linear I-V characteristics. The current state-of-the-art GaN power transistor circuit models are mostly empirical in nature and contain a large number of fitting parameters. The source-drain series resistance and self-heating make the compact modeling difficult [2]. Currently available models are not enough accurate to describe the I-V characteristics of power GaN HEMTs in all operation modes. This means, that we need a compact physics-based analytical model based on the physical description of the device. In this paper, we present a physics-based GaN power transistor model based on generic approach The paper contains 3 parts. In the first part, we will give a concise description of the model. The specific power HEMT’s effects, such as series resistance and self-heating will be discussed in the second and third parts 

Dec 13, 2016

[paper] A surface potential large signal model for AlGaN/GaN HEMTs

A surface potential large signal model for AlGaN/GaN HEMTs
Q. Wu, Y. Xu, Z. Wen, Y. Wang and R. Xu
2016 11th EuMIC, London, UK, 2016, pp. 349-352

doi: 10.1109/EuMIC.2016.7777562

Abstract: This paper presents an accurate analytical surface-potential-based compact model for AlGaN/GaN HEMTs for SPICE-like circuit simulation. Considering the important energy level E0, an easy-implemented analytical continuous expression for the fermi level position Ef was deduced to obtain the surface potential (SP) φs. Then analytical core models for intrinsic charge and drain current are derived based on φs. The model has been implemented in Agilent ADS by using symbolic defined device. Excellent agreement of DC I-V, fundamental output power, power added efficiency and gain is obtained for the first time compared with measurement results. Moreover, the effect of physical parameter such as the barrier thickness d on device characteristic is researched on the basic of this model. The results show that the proposed physical based model can be useful for technological parameters analysis and optimization of process.

[read more: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7777562&isnumber=7777458]

Nov 18, 2016

INFOS 2017 in Potsdam, Germany

20th Conference on “Insulating Films on Semiconductors” 
INFOS 2017
June 27th – 30th, 2017 in Potsdam, Germany

The INFOS conference is a prestigious biennial event which brings together electrical engineers, technologists, materials scientists, device physics and chemists from Europe and around the world to debate the latest development in thin insulating film technology and identify as well as address challenges ahead in this highly diversifying field [read more...]

Conference Topics:
  • High-k dielectrics, metal gate materials and SiO2 for future scaling
  • Gate stack materials for high mobility substrates (Ge, SiGe, GaN, III-V)
  • Stacked dielectrics for non-volatile memory (flash, nc-Si)
  • Dielectrics for resistive switching memories and spin memories
  • Dielectrics for DRAM and MIM
  • Low-k dielectrics
  • Semiconductors on insulators
  • Dielectrics for 2D materials, nanowires, 2D devices and carbon-based devices
  • Surface cleaning technologies
  • Physics and chemistry of dielectrics and defects
  • Characterization techniques for dielectrics and interfaces
  • Electrical reliability, leakage and modelling
  • Modelling of atomic structure of dielectrics, interfaces and thin films
  • Topological insulators
  • Ferroelectrics and functional oxides
  • Dielectrics and thin films for TFT, amorphous or organic devices and photovoltaics
  • Dielectrics for photonics and sensing

Jul 30, 2014

Semiconductor Devices Characterization Seminar

Technical Seminars addressing the challenges of CMOS, Power and RF
semiconductor device measurement and modeling 
Agilent and it´s 25 collaborative partners invite you to attend this complimentary technical seminar on characterization and modeling of semiconductor devices. Two tracks in parallel will address the needs for:
  • Small scale silicon industry
  • Power silicon industry and RF Power
Common topics to both Tracks:
  • Live demonstration of GaN device characterization flow: DC I-V characteristic extraction, RF Power measurement, Spice models creation for further usage in design stage.
CMOS Track:
  • Accurate and repeatable on-the-wafer device extraction – Cascade Microtech
  • DC characterization for emerging nano-technologies
  • Flicker Noise and Random Telegraph Noise
  • Spice model libraries optimization for dedicated application
Power & RF Power Track:
  • High Power Devices measurement
  • III-V devices spice model (DynaFET)
  • Nonlinear Component characterization
  • Non-50ohm Load Pull solution – Maury
Where/when:
To obtain the detail agenda of the nearest session, please select one of the locations below.
CountryCityDateMore Information
FRGrenoble18 September 2014Register here
FIHelsinki23 September 2014Register here
DEMunich30 September 2014Register here
DEDresden2 October 2014Register here
CHLausanne14 October 2014Register here
BELeuven16 October 2014Register here
NLEindhoven17 October 2014Register here
SWGoteborg28 October 2014Register here
UKCambridge30 October 2014Register here
FRLes Ulis6 November 2014Register here