[9.6] GaNFET Compact Model for Linking Device Physics, High Voltage Circuit Design and Technology Optimization, U. Radhakrishna, S. Lim, P. Choi, T. Palacios, and D.A Antoniadis, Massachusetts Institute of Technology
[28.1] Transport Mechanism in sub 100C Processed High Mobility Polycrystalline ZnO Transparent Thin Film Transistors, P.B. Pillai, and M.M. De Souza, University of Sheffield
[28.2] Physical-based Analytical Model of flexible a-IGZO TFTs Accounting for Both Charge Injection and Transport, M. Ghittorelli, F. Torricelli, J.L. Van Der Steen*, C. Garripoli**, A. Tripathi*, G. Gelinck*, E. Cantatore**, Z. Kovacs-Vajna, University of Brescia, *Holst Centre, TNO, **Eindhoven University of Technology
[28.3] Predictive Compact Modeling of Random Variations in FinFET Technology for 16/14nm Node and Beyond, X. Jiang, X. Wang*, R. Wang, B. Cheng**, A. Asenov*, and R. Huang, Peking University, *University of Glasgow, **Gold Standard Simulations (GSS) Ltd.
[28.4] A New Surface Potential Based Physical Compact Model for GFET in RF Applications, L. Wang, S. Peng, Z. Zong, L. Li, W. Wang, G. Xu, N. Lu, Z. Ji, and M. Liu, Chinese Academy of Sciences
[28.5] Physics-based Compact Modeling Framework for State-of-the-Art and Emerging STT-MRAM Technology, N. Xu, J. Wang, Y. Lu, H.-H. Park, B. Fu, R. Chen, W. Choi, D. Apalkov, S. Lee*, S. Ahn*, Y. Kim*, Y. Nishizawa**, K.-H. Lee, Y. Park, Samsung Semiconductor Inc, *Samsung Electronics, **Samsung R&D Institute Japan
[28.6] Physics-based Compact Modeling of Charge Transport in Nanoscale Electronic Devices (Invited), S. Rakheja, and D. Antoniadis*, New York University, *Massachusetts Institute of Technology
[28.1] Transport Mechanism in sub 100C Processed High Mobility Polycrystalline ZnO Transparent Thin Film Transistors, P.B. Pillai, and M.M. De Souza, University of Sheffield
[28.2] Physical-based Analytical Model of flexible a-IGZO TFTs Accounting for Both Charge Injection and Transport, M. Ghittorelli, F. Torricelli, J.L. Van Der Steen*, C. Garripoli**, A. Tripathi*, G. Gelinck*, E. Cantatore**, Z. Kovacs-Vajna, University of Brescia, *Holst Centre, TNO, **Eindhoven University of Technology
[28.3] Predictive Compact Modeling of Random Variations in FinFET Technology for 16/14nm Node and Beyond, X. Jiang, X. Wang*, R. Wang, B. Cheng**, A. Asenov*, and R. Huang, Peking University, *University of Glasgow, **Gold Standard Simulations (GSS) Ltd.
[28.4] A New Surface Potential Based Physical Compact Model for GFET in RF Applications, L. Wang, S. Peng, Z. Zong, L. Li, W. Wang, G. Xu, N. Lu, Z. Ji, and M. Liu, Chinese Academy of Sciences
[28.5] Physics-based Compact Modeling Framework for State-of-the-Art and Emerging STT-MRAM Technology, N. Xu, J. Wang, Y. Lu, H.-H. Park, B. Fu, R. Chen, W. Choi, D. Apalkov, S. Lee*, S. Ahn*, Y. Kim*, Y. Nishizawa**, K.-H. Lee, Y. Park, Samsung Semiconductor Inc, *Samsung Electronics, **Samsung R&D Institute Japan
[28.6] Physics-based Compact Modeling of Charge Transport in Nanoscale Electronic Devices (Invited), S. Rakheja, and D. Antoniadis*, New York University, *Massachusetts Institute of Technology
The compact/SPICE modeling and its Verilog-A standardization will be also discussed at two following engineering events organized by MOS-AK Group and the CMC which are collocated with the IEDM in Washington DC in December, later this year.
[online MOS-AK and CMC registration]
- MOS-AK Workshop in Washington DC (Dec.9)
- CMC Meeting at Sheraton Suites Old Town Alexandria (Dec.10-11)
No comments:
Post a Comment