May 10, 2024
OSOC Initiative
Apr 30, 2024
[Kick-off] Chipdesign Germany
14:00 Eröffnung
14:00 Begrüßung
Holger Blume; Leibniz Universität Hannover & edacentrum e.V.14:15 Grußworte
Apollonia Pane Bundesministerium für Bildung und Forschung14:30 Vorstellung Chipdesign Germany
Holger Blume; Leibniz Universität Hannover & edacentrum e.V.14:45 Keynote-Session I
Norbert Wehn; Rheinland-Pfälzische Technische Universität Kaiserslautern-Landau
14:45 Open-Source EDA and Innovation Leadership
Andrew B. Kahng; University of California San Diego, US
16:30 Keynote-Session II
16:30 Open Source Chip Design: Europas Weg zur Wettbewerbsfähigkeit in einer geteilten Tech-Welt?Jan-Peter Kleinhans; Stiftung Neue Verantwortung17:30 Mikroelektronik in digitalen Hörhilfen: Chips, die hören helfenJoachim Thiemann; Advanced Bionic
08:30 Begrüßung
Holger Blume; Leibniz Universität Hannover & edacentrum e.V
08:45 Neue Fertigungstechnik für die Chipverarbeitung
Lutz Rissing; Dr. Johannes Heidenhain GmbH
10:30 DE:Sign Präsentationen
BMBF-Förderlinie "Design-Instrumente für souveräne Chipentwicklung mit Open-Source (DE:Sign)"
10:30 DI-OCRCpro
Daniel Krupka; Gesellschaft für Informatik e.V.
10:45 DI-DEMICO
Frank Ellinger; Technische Universität Dresden
11:00 DI-DERAMSys
Matthias Jung; Julius-Maximilian-Universität Würzburg
11:15 DI-OWAS
Dirk Koch; Ruprecht-Karls-Universität Heidelberg
11:30 DI-PASSIONATE
Robert Weigel; Friedrich-Alexander Universität Erlangen-Nürnberg
13:30 Verabschiedung
Adresse: Königlicher Pferdestall - Leibniz Universität Hannover; Appelstr. 7, 30167 Hannover
OnLine Registrierung: https://eveeno.com/auftaktchipdesigngermany
Mar 28, 2024
[paper] Chip Placement with Deep Learning
Abstract: In this work, we present a learning-based approach to chip placement, one of the most complex and time-consuming stages of the chip design process. Unlike prior methods, our approach has the ability to learn from past experience and improve over time. In particular, as we train over a greater number of chip blocks, our method becomes better at rapidly generating optimized placements for previously unseen chip blocks. To achieve these results, we pose placement as a Reinforcement Learning (RL) problem and train an agent to place the nodes of a chip netlist onto a chip canvas. To enable our RL policy to generalize to unseen blocks, we ground representation learning in the supervised task of predicting placement quality. By designing a neural architecture that can accurately predict reward across a wide variety of netlists and their placements, we are able to generate rich feature embeddings of the input netlists. We then use this architecture as the encoder of our policy and value networks to enable transfer learning. Our objective is to minimize PPA (power, performance, and area), and we show that, in under 6 hours, our method can generate placements that are superhuman or comparable on modern accelerator netlists, whereas existing baselines require human experts in the loop and take several weeks.