Showing posts with label ML. Show all posts
Showing posts with label ML. Show all posts

Mar 28, 2024

[paper] Chip Placement with Deep Learning

Azalia Mirhoseini, Anna Goldie, Mustafa Yazgan, Joe Jiang, Ebrahim Songhori, Shen Wang, Young-Joon Lee, Eric Johnson, Omkar Pathak, Sungmin Bae Azade, Nazi Jiwoo, Pak Andy, Tong Kavya Srinivasa, William Hang, Emre Tuncer, Anand Babu Quoc, Le James Laudon, Richard Ho, Roger Carpenter, Jeff Dean
Chip placement with deep reinforcement learning
arXiv preprint:2004.10746 (2020)

Abstract: In this work, we present a learning-based approach to chip placement, one of the most complex and time-consuming stages of the chip design process. Unlike prior methods, our approach has the ability to learn from past experience and improve over time. In particular, as we train over a greater number of chip blocks, our method becomes better at rapidly generating optimized placements for previously unseen chip blocks. To achieve these results, we pose placement as a Reinforcement Learning (RL) problem and train an agent to place the nodes of a chip netlist onto a chip canvas. To enable our RL policy to generalize to unseen blocks, we ground representation learning in the supervised task of predicting placement quality. By designing a neural architecture that can accurately predict reward across a wide variety of netlists and their placements, we are able to generate rich feature embeddings of the input netlists. We then use this architecture as the encoder of our policy and value networks to enable transfer learning. Our objective is to minimize PPA (power, performance, and area), and we show that, in under 6 hours, our method can generate placements that are superhuman or comparable on modern accelerator netlists, whereas existing baselines require human experts in the loop and take several weeks.

Fig: Visualization of placements. On the left, zero-shot placements from the pre-trained policy and on the right, placements from the finetuned policy are shown. The zero-shot policy placements are generated at inference time on a previously unseen chip. The pre-trained policy network (with no fine-tuning) places the standard cells in the center of the canvas surrounded by macros, which is already quite close to the optimal arrangement and in line with the intuitions of physical design experts.

Acknowledgments: This project was a collaboration between Google Research and the Google Chip Implementation and Infrastructure (CI2) Team. We would like to thank Cliff Young, Ed Chi, Chip Stratakos, Sudip Roy, Amir Yazdanbakhsh, Nathan Myung-Chul Kim, Sachin Agarwal, Bin Li, Martin Abadi, Amir Salek, Samy Bengio, and David Patterson for their help and support.


Feb 26, 2023

[paper] Fast and Expandable ANN-Based Extraction

Jeong, HyunJoon, SangMin Woo, JinYoung Choi, HyungMin Cho, Yohan Kim,
Jeong-Taek Kong, and SoYoung Kim
Fast and Expandable ANN-Based Compact Model and Parameter Extraction for Emerging Transistors IEEE Journal of the Electron Devices Society (2023)
DOI 10.1109/JEDS.2023.3246477

Abstract: In this paper, we present a fast and expandable artificial neural network (ANN)-based compact model and parameter extraction flow to replace the existing complicated compact model implementation and model parameter extraction (MPE) method. In addition to nanosheet FETs (NSFETs), our published ANN based compact modeling framework is easily extended to negative capacitance NSFETs (NC-NSFETs), which are attracting attention as next-generation devices. Each device is designed using a technology computer-aided design (TCAD) simulator. Using device structure parameters, temperature, and channel doping depth as input variables, we construct a dataset of electrical properties used for machine learning (ML)-based modeling. The accuracy of predicting device electrical characteristics with the proposed ANN-based compact model is less than a 1% error compared to TCAD, and simulation results of digital and analog circuits using the proposed compact model show less than a 3% error. This allows the ANN-based modeling framework to achieve accurate DC, AC, and transient simulations without restrictions on device technology. In particular, temperature and process variables such as channel doping depth, which are not defined in the compact model parameters, are easily added to the previously presented five key parameters. Instead of conventional complex compact modeling and MPE work, we propose a method to create fast, accurate, flexible, and expandable ML-based Verilog-A SPICE models with design technology co-optimization (DTCO) capabilities.


Fig A: Conventional model parameter extraction flow

Fig B: The proposed ANN-based model parameter extraction flow

Acknowledgments: We thank the reviewers for improving the contents of the paper. This work was supported by an Institute of Information & communications Technology Planning & Evaluation (IITP) grant funded by the Korean government (MSIT) (No.2021-0- 00754, Software Systems for AI Semiconductor Design) and by a National Research Foundation of Korea grant funded by the Korean government (MISP) (NRF-2020R1A2C1011831). The EDA tool was supported by the IC Design Education Center (IDEC), Korea

Apr 26, 2022

[paper] DL Physics-Driven MOSFET Modeling

Ming-Yen Kao, H. Kam, and Chenming Hu, Life Fellow, IEEE
Deep-Learning-Assisted Physics-Driven MOSFET Current-Voltage Modeling
in IEEE Electron Device Letters
DOI: 10.1109/LED.2022.3168243

Abstract: In this work, we propose using deep learning to improve the accuracy of the partially-physics-based conventional MOSFET current-voltage model. The benefits of having some physics-driven features in the model are discussed. Using a portion of the Berkeley Short-channel IGFET Common-Multi-Gate (BSIM-CMG), the industry-standard FinFET and GAAFET compact model, as the physics model and a 3-layer neural network with 6 neurons per layer, the resultant model can well predict IV, output conductance, and transconductance of a TCAD-simulated gate-all-around transistor (GAAFET) with outstanding 3-sigma errors of 1.3%, 4.1%, and 2.9%, respectively. Implications for circuit simulation are also discussed.
Fig: (a) Model implementation for circuit simulations, without the relative gm and gds errors terms in the cost function, Model shows larger prediction error in (b) gm and (c) gds.

Acknowledgements: This work was supported by the Berkeley Device Modeling Center, 
UCB, CA (USA)