Showing posts with label 5G. Show all posts
Showing posts with label 5G. Show all posts

Apr 12, 2022

[paper] Roadmapping of Nanoelectronics for the New Electronics Industry

Paolo Gargini1,Francis Balestra2, and Yoshihiro Hayashi3
Roadmapping of Nanoelectronics for the New Electronics Industry
Appl. Sci. 2022, 12(1), 308
DOI: 10.3390/app12010308
Received: 4 November 2021 / Revised: 17 December 2021 
Accepted: 20 December 2021 / Published: 29 December 2021
Academic Editor: Gerard Ghibaudo; This article belongs to the Special Issue Advances in Microelectronic Materials, Processes and Devices
   
1IEEE IRDS, (US)
2 CNRS, Grenoble INP (F)
3 Keio University, Tokyo (J)


Abstract: This paper is dedicated to a review of the international effort to map the future of nanoelectronics from materials to systems for the new electronics industry. The following sections are highlighted: the Roadmap structure with the international teams, the methodology and historical evolution, the various eras of scaling, the new ecosystems and computer industry, the evolving supply chain, the development of SoC and SiP, the advent of the Internet of Everything and the 5G communications, the dramatic increase of data centers, the power challenge, the technology fusion, heterogeneous and system integration, the emerging technologies, devices and computing architectures, and the main challenges for future applications.
FIG: 40 Years of Microprocessor Trend Data

Feb 10, 2022

[paper] Special Topic on Materials and Devices for 5G Electronics

Nathan D. Orloff1, Rick Ubic2, and Michael Lanagan3
Special topic on materials and devices for 5G electronics
Appl. Phys. Lett. 120, 060402 (2022); 
DOI: 10.1063/5.0079175
1 NIST, Colorado, USA
2 Boise State University, Idaho, USA
3 Penn State University, Pennsylvania, USA

Abstract: Next generation communications are inspiring entirely new applications in education, healthcare, and transportation. These applications are only possible because of improvements in latency, data rates, and connectivity in the latest generation. Behind these improvements are new materials and devices that operate at much higher frequencies than ever before, a trend that is likely to continue. Beyond these exciting applications, higher frequency millimeter waves (mmWaves) may also address a growing problem with capacity. Today, most capacity problems occur when large numbers of wireless connections or applications access the network at the same time at any single location. As wireless internet connections far surpass wired connections and wireless data usage has grown exponentially for more than 10 years,3 many believe that capacity problems will spread without access to new bandwidth.

FIG: A plot of the peak data rates vs the operating frequency 
where the diameter of the circle is the bandwidth.

Acknowledgement: Our [the editors] special thanks to Lesley Cohen, Editor-in-Chief, Susan Trolier-McKinstry, Associate Editor, and Jessica Trudeau and Emma Nicholson Van Burns for their technical assistance with publishing.


May 25, 2020

[paper] IoT Vision empowered by EH-MEMS and RF-MEMS

Internet of things (IoT); internet of everything (IoE); tactile internet; 5G
A (not so evanescent) unifying vision empowered 
by EH-MEMS (energy harvesting MEMS) and RF-MEMS (radio frequency MEMS)
 Jacopo Iannacci
Fondazione Bruno Kessler (FBK) in Trento (IT)
Sensors and Actuators A: Physical 272 (2018): 187-198

Abstract: This work aims to build inclusive vision of the Internet of Things (IoT), Internet of Everything (IoE), Tactile Internet and 5G, leveraging on MEMS technology, with focus on Energy Harvesters (EH-MEMS) and Radio Frequency passives (RF-MEMS). The IoT is described, stressing the pervasivity of sensing/actuating functions. High-level performances 5G will have to score are reported. Unifying vision of the mentioned paradigms is then built. The IoT evolves into the IoE by overtaking the concept of thing. Further step to Tactile Internet requires significant reduction in latency, it being enabled by 5G.

The discussion then moves closer to the hardware components level. Sets of specifications driven by IoT and 5G applications are derived. Concerning the former, the attention is concentrated on typical power requirements imposed by remote wireless sensing nodes. Regarding the latter, a set of reference specifications RF passives will have to meet in order to enable 5G is developed. Once quantitative targets are set, a brief state of the art of EH-MEMS and RF-MEMS solutions is developed, targeting the IoT and 5G, respectively. In both scenarios, it will be demonstrated that MEMS are able to address the requirements previously listed, concerning EH from various sources and RF passive components.
FIG: Scheme of the pillar drivers supporting evolution of the IoT into IoE andTactile Internet.
Some relevant IoT technology enablers are indicated.
In conclusion, the frame of reference depicted in this work outlines a relevant potential borne by EH-MEMS and RF-MEMS solutions within the unified scenario of IoT, IoE, Tactile Internet and 5G, making the forecast of future relentless growth of MEMS-based devices, more plausible and likely to take place.


Feb 9, 2017

[paper] RF-MEMS for Future Mobile Applications: Experimental Verification of a Reconfigurable 8-Bit Power Attenuator up to 110 GHz

RF-MEMS for Future Mobile Applications: Experimental Verification of a Reconfigurable 8-Bit Power Attenuator up to 110 GHz
Jacopo Iannacci1 and Christian Tschoban2
1Center for Materials and Microsystems - CMM, Fondazione Bruno Kessler , Trento, ITALY
2Fraunhofer Institut für Zuverlässigkeit und Mikrointegration IZM , Berlin, GERMANY
Journal of Micromechanics and Microengineering
Accepted Manuscript online 8 February 2017
Abstract
RF-MEMS technology is indicated as a key enabling solution to realise the high-performance and highly-reconfigurable passive components that future 5G communication standards will demand for. In this work, we present, test and discuss a novel design concept of an 8-bit reconfigurable power attenuator manufactured in the RF-MEMS technology available at the CMM-FBK, in Italy. The device features electrostatically controlled MEMS ohmic switches, in order to select/deselect resistive loads (both in series and shunt configuration) that attenuate the RF signal, and comprises 8 cascaded stages (i.e. 8-bit), thus implementing 256 different network configurations. Fabricated samples are measured (S-parameters) from 10 MHz to 110 GHz in a wide range of different configurations, and modelled/simulated in Ansys HFSS. The device exhibits attenuation levels (S21) in the range from -10 dB to -60 dB, up to 110 GHz. In particular, the S21 shows flatness from 15 dB down to 3-5 dB, from 10 MHz to 50 GHz, while less linear traces up to 110 GHz. Comprehensive discussion is developed around the Voltage Standing Wave Ratio (VSWR), employed as quality indicator for the attenuation levels. Margins of improvement at design level are also discussed, in order to overcome the limitations of the presented RF-MEMS device. The results of S-parameter simulations performed in the Quite Universal Circuit Simulator (QUCS: qucs.sourceforge.net) for a few significant configurations of the RF-MEMS attenuator from 10MHz to 110GHz are reported, too. [read more...]