[Citation] Markman, B. D. (2020). III-V InxGa1-xAs / InP MOS-HEMTs for 100-340GHz Communications Systems. UC Santa Barbara. ProQuest ID: Markman_ucsb_0035D_14853. Merritt ID: ark:/13030/m5v4681j. Retrieved from https://escholarship.org/uc/item/6st812pb
Oct 30, 2020
[PhD Thesis] III-V MOS-HEMTs for 100-340GHz Communications Systems
[Citation] Markman, B. D. (2020). III-V InxGa1-xAs / InP MOS-HEMTs for 100-340GHz Communications Systems. UC Santa Barbara. ProQuest ID: Markman_ucsb_0035D_14853. Merritt ID: ark:/13030/m5v4681j. Retrieved from https://escholarship.org/uc/item/6st812pb
Oct 21, 2020
[Survey] Power Amplifiers Performance 2000-Present
Fifth web release on 2020/10/15: "PA_Survey_v5". This version-5 dataset includes PAs/transmitters from 500MHz to 1.5 THz in Bulk/SOI CMOS, SiGe, LDMOS, InP, GaN, GaAs technologies. The dataset contains total 3207 data points with over 1200 data points for CMOS, SiGe PAs and over 1500 data points for GaN, GaAs, InP PAs.
We have added sub-THz/THz power/signal generation circuits from 15GHz to 1.5THz, including PAs, fundamenal/harmonic oscillators, and frequency multipliers, to support the emerging research on beyond-5G/6G applications.
The file "PA_Survey_v5" is the version-5 dataset that includes ALL the reported PA/transmitter data since 2000 over frequency and various technologies. It also includes summary plots on CW Psat vs. Carrier Frequency for different technologies, peak PAE vs. CW Psat at different frequencies, and average PAE vs. average Pout for high-order complex modulations.
What is new in version-5 release beyond the version-4 release? 500MHz to 1.5 THz Power Amplifier designs and sub-THz/THz power/signal generation circuits published between 02/2020 and 10/2020.
- Cite this PA survey: Hua Wang, Tzu-Yuan Huang, Naga Sasikanth Mannem, Jeongseok Lee, Edgar Garay, David Munzer, Edward Liu, Yuqi Liu, Bryan Lin, Mohamed Eleraky, Sensen Li, Fei Wang, Amr S. Ahmed, Christopher Snyder, Sanghoon Lee, Huy Thong Nguyen, and Michael Edward Duffy Smith, "Power Amplifiers Performance Survey 2000-Present," [Online]. Available: https://gems.ece.gatech.edu/PA_survey.html
- Acknowledgement: We would like to sincerely thank many of our friends and colleagues for their helpful suggestions and insightful discussions.
- Feedback and Suggestions: We welcome your feedback and suggestions, including the ways to interpret and present the data. In addition, although we try to be as inclusive as possible when collecting these published data, it is certainly possible that we may miss some representative PA designs. Please feel free to send us feedback, suggestions, or missing PA papers.
- Contact: Please contact us through poweramplifiers.survey at gmail dot com. Do not use my gatech email address, since I may very likely miss your email.
- Source for this data collection: We focus on peer-reviewed and publicly accessible publications that are typical forums for PAs, including IEEE ISSCC, JSSC, RFIC, VLSI, CICC, ESSCIRC, IMS, T-MTT, TCAS, BCTM/CSICS (BCICTS in the future), APMC, EuMC, and MWCL. We also focus on public product datasheets on PAs/transmitters.
Jun 1, 2020
[paper] Device Scaling for 3-nm Node and Beyond
Acknowledgment: The authors would like to thank Dr. Bidhan Pramanik, IIT Goa, India, Dr. KB Jinesh, IIST, Trivandrum, India, and Dr. Geert Eneman, IMEC, Leuven, Belgium, for their valuable technical support.
URL: https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9078841&isnumber=9098120