Showing posts with label organic. Show all posts
Showing posts with label organic. Show all posts

Apr 22, 2024

[C4P] Orbitaly2024 in Bologna

8th International Conference on Organic Bioelectronics
Orbitaly2024
Bologna Sept. 23-25, 2024

OrBItaly (Organic BIoelectronics Italy) is an international conference, organized by the Italian scientific community and dedicated to the most recent results in the field of bioelectronics, with a particular focus on the employment of organic materials. OrBItaly has attracted in the years a growing interest of the scientists coming from all over the world. The 2024 edition is the seventh one of this cross-disciplinary conference, and will be held in Bologna, on September 23rd-25th, 2024, at the San Giovanni in Monte historic building in the centre of Bologna.

The abstract submission is open, with its deadline on 15th June 2024. 

All details about the conference can be found on the website: https://eventi.unibo.it/orbitaly2024

Looking forward to meeting you in Bologna

The OrBItaly 2024 Organizing Committee
Beatrice Fraboni, 
Francesco Decataldo, 
Marta Tessarolo, 
Tobias Cramer,
Vito Vurro




Apr 5, 2024

[paper] Organic Electrochemical Transistor Arrays

Jaehyun Kim, Robert M. Pankow, Yongjoon Cho, Isaiah D. Duplessis, Fei Qin, Dilara Meli, Rachel Daso, Ding Zheng, Wei Huang, Jonathan Rivnay, Tobin J. Marks and Antonio Facchetti
Monolithically integrated high-density vertical organic electrochemical transistor arrays
and complementary circuits.
Nat Electron 7, 234–243 (2024)
DOI: 10.1038/s41928-024-01127-x

1 Department of Chemistry and Materials Research Center, Northwestern University, Evanston, IL, USA
2 Department of Semiconductor Science, Dongguk University, Seoul, Republic of Korea
3 Department of Materials Science and Engineering, Northwestern University, Evanston, IL, USA
4 Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA
5 Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, Sweden
6 School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA, USA


Abstract Organic electrochemical transistors (OECTs) can be used to create biosensors, wearable devices and neuromorphic systems. However, restrictions in the micro- and nanopatterning of organic semiconductors, as well as topological irregularities, often limit their use in monolithically integrated circuits. Here we show that the micropatterning of organic semiconductors by electron-beam exposure can be used to create high-density (up to around 7.2 million OECTs per cm2) and mechanically flexible vertical OECT arrays and circuits. The energetic electrons convert the semiconductor exposed area to an electronic insulator while retaining ionic conductivity and topological continuity with the redox-active unexposed areas essential for monolithic integration. The resulting p- and n-type vertical OECT active-matrix arrays exhibit transconductances of 0.08–1.7 S, transient times of less than 100 μs and stable switching properties of more than 100,000 cycles. We also fabricate vertically stacked complementary logic circuits, including NOT, NAND and NOR gates.
FIG: High-density monolithically integrated vOECT arrays fabricated by e-beam exposure.
 a.) Photograph  vOECT arrays comprising bgDPP-g2T OECTs
b.) Transconductance map of the wafer-scale vOECTs; 
c.) Transfer IVs of 100 bgDPP-g2T vOECTs (W = d = 10 µm) 

Acknowledgements: This work was supported by the AFOSR (contract no. FA9550-22-1-0423), the US Office of Naval Research Contract no. N00014-20-1-2116, by the US Department of Commerce, National Institute of Standards and Technology as part of the Centre for Hierarchical Materials Design Award no. 70NANB10H005, BSF (award no. 2020384), NSF (DMR-2223922) and the Northwestern University Materials Research Science and Engineering Center Awards NSF DMR-1720139 and DMR-2308691. J.R. gratefully acknowledges support from the Alfred P. Sloan Foundation (FG-2019-12046). This work acknowledges the US Department of Energy under contract no. DE-AC02-05CH11231 at beamline 8-ID-E of the Advanced Photon Source, a US Department of Energy (DOE) Office of Science User Facility operated for the DOE Office of Science by Argonne National Laboratory under Contract No. DE-AC02-06CH11357. This work made use of the NUFAB facility of Northwestern University’s NUANCE Center, which has received support from the SHyNE Resource (NSF ECCS-2025633), the IIN and Northwestern’s MRSEC programme (NSF DMR-1720139).

Feb 14, 2024

Summer School on Organic Electronics and Neuromorphic Systems

June 17-20, 2024
will consist of a comprehensive set of classes aimed at doctoral or postdoctoral level researchers from both industry and academia. By means of a programme consisting of lectures, tutorials, advanced discussion groups, students will expand and refine their knowledge of organic materials, devices and circuits for microelectronics, as well as of neuromorphic devices and circuits with the world’s leading experts in these fields.

This Summer School is sponsored by the EU-funded BAYFLEX (Bayesian Inference with Flexible electronics for biomedical Applications) project. It is organized by the Department of Electronic, Electrical and Automatic Control Engineering (DEEEiA) of the Universitat Rovira i Virgili (URV), in Tarragona. The Chair of the Summer School is Prof. Benjamin Iñiguez.

PhD students can present posters showing some of their results in a session on June 20 afternoon. Interested PhD students can submit short abstracts of the results they want to present in the Poster Session.

Invited Speakers

Mini-Colloquium:


Jul 21, 2023

[book] Organic and Inorganic Light Emitting Diodes

Organic and Inorganic Light Emitting Diodes
Reliability Issues and Performance Enhancement

Edited By T.D. Subash, J. Ajayan, W. Grabinski

ISBN 9781032375175 1st Edition (C) 2023
198 Pages 106 B/W Illustrations
Published June 19, 2023 by CRC Press

Description
This book covers a comprehensive range of topics on the physical mechanisms of LEDs (light emitting diodes), scattering effects, challenges in fabrication and efficient enhancement techniques in organic and inorganic LEDs. It deals with various reliability issues in organic/inorganic LEDs like trapping and scattering effects, packaging failures, efficiency droops, irradiation effects, thermal degradation mechanisms, and thermal degradation processes.

Chapter 1: Fundamental Physics of Light Emitting Diodes: Organic
and Inorganic Technology; Deboraj Muchahary, Sagar Bhattarai, Arvind Sharma and Ajay Kumar Mahato
Chapter 2: Physical Mechanisms That Limit the Reliability of LEDs; Tulasi Radhika Patnala, N. Hemalatha, Sankararao Majji and M. Sundar Rajan
Chapter 3: Scattering Effects on the Optical Performance of LEDs; Vinodhini Subramaniyam, B. A. Saravanan and Moorthi Pichumani
Chapter 4: Challenges in Fabrication and Packaging of LEDs; Nesa Majidzadeh and Hossein Movla
Chapter 5: Opportunities and Challenges in Flexible and Organic LED; Shalu C.
Chapter 6: Light Extraction Efficiency Improvement Techniques in Light-Emitting Diodes; M. Manikandan, G. Dhivyasri, D. Nirmal, Joseph Anthony Prathap and Binola K. Jebalin I. V.
Chapter 7: Efficiency Enhancement Techniques in Flexible and Organic Light-Emitting Diodes; J. Ajayan and T. D. Subash
Chapter 8: Performance Enhancement of Light Emitting Radiating Dipoles (LERDs) Using Surface Plasmon-Coupled and Photonic Crystal-Coupled Emission Platforms; Seemesh Bhaskar and Sai Sathish Ramamurthy



Jul 12, 2023

[paper] Bionic Neural Probe

Yu Zhou, Huiran Yang, Xueying Wang, Heng Yang, Ke Sun, Zhitao Zhou, Liuyang Sun, Jianlong Zhao, Tiger H. Tao and Xiaoling Wei
A mosquito mouthpart-like bionic neural probe
Microsystems & Nanoengineering volume 9, Article number: 88 (2023)
DOI: 10.1038/s41378-023-00565-5

Abstract: Organic electronics can be biocompatible and conformable, enhancing the ability to interface with tissue. However, the limitations of speed and integration have, thus far, necessitated reliance on silicon-based technologies for advanced processing, data transmission and device powering. Here we create a stand-alone, conformable, fully organic bioelectronic device capable of realizing these functions. This device, vertical internal ion-gated organic electrochemical transistor (vIGT), is based on a transistor architecture that incorporates a vertical channel and a miniaturized hydration access conduit to enable megahertz-signal-range operation within densely packed integrated arrays in the absence of crosstalk. These transistors demonstrated long-term stability in physiologic media, and were used to generate high-performance integrated circuits. We leveraged the high-speed and low-voltage operation of vertical internal ion-gated organic electrochemical transistors to develop alternating-current-powered conformable circuitry to acquire and wirelessly communicate signals. The resultant stand-alone device was implanted in freely moving rodents to acquire, process and transmit neurophysiologic brain signals. Such fully organic devices have the potential to expand the utility and accessibility of bioelectronics to a wide range of clinical and societal applications.

FIG: Multifunctional biomimetic neural probe system, with multichannel flexible electrode array and high sensitivity sensor array. 


Mar 3, 2022

[paper] Progress in Organic Photodiodes through Physical Process Insights

Hrisheekesh Thachoth Chandran,Cenqi Yan,Gang Li
Progress in Organic Photodiodes through Physical Process Insights
Adv. Energy Sustainability Res. (2022) 2200002.
DOI: 10.1002/aesr.202200002
   
*The Hong Kong Polytechnic University

Abstract: Photodetectors based on organic materials have enormous potential due to their attractive optoelectronic and mechanical properties. In recent years, some of the performance metrics comparable to the conventional inorganic photodetectors have been realized in visible-range organic photodiodes (OPDs). These advancements in OPDs are mainly driven by innovations in device engineering and material design. However, insights into the fundamental performance limiting factors are imperative to further understand, optimize, and predict the performance metrics of OPD devices beyond conventional wisdom. In this review, the major progress in understandings related to trap state, charge transfer state, and noise/detectivity limits in OPD devices are highlighted.
FIG: (a) Simplified device architecture of cavity-enhanced photodiode. (b) Simplified energy-level diagram with the demonstration of photon absorption, charge generation, and charge transport processes. 

Acknowledgements: This work was supported by the following grants: Research Grants Council of Hong Kong (GRF grant 15221320, CRF C5037-18G), National Science Foundation of China (NSFC 51961165102), Shenzhen Science and Technology Innovation Commission (Project No. JCYJ 20200109105003940), and the Hong Kong Polytechnic University (The Sir Sze-yuen Chung Endowed Professorship Fund (8-8480) and Postdoc Matching Fund scheme (1-W15V)).

Dec 23, 2020

[paper] Coplanar OTFT

Blurred Electrode for Low Contact Resistance in Coplanar Organic Transistors
Xiaolin Ye, Xiaoli Zhao, Shuya Wang, Zhan Wei, Guangshuang Lv, Yahan Yang, Yanhong Tong, Qingxin Tang, and Yichun Liu
American Chemical Society; Nano; Dec.18, 2020
DOI: 10.1021/acsnano.0c08122

*Center for Advanced Optoelectronic Functional Materials Research, and Key Lab of UV-Emitting Materials and Technology of Ministry of Education, Northeast Normal University, 5268 Renmin Street, Changchun 130024, China

Abstract: Inefficient charge injection and transport across the electrode/semiconductor contact edge severely limits the device performance of coplanar organic thin-film transistors (OTFTs). To date, various approaches have been implemented to address the adverse contact problems of coplanar OTFTs. However, these approaches mainly focused on reducing the injection resistance and failed to effectively lower the access resistance. Here, we demonstrate a facile strategy by utilizing the blurring effect during the deposition of metal electrodes, to significantly reduce the access resistance. We find that the transition region formed by the blurring behavior can continuously tune the molecular packing and thin-film growth of organic semiconductors across the contact edge, as well as provide continuously distributed gap states for carrier tunnelling. Based on this versatile strategy, the fabricated dinaphtho[2,3-b:2′,3′-f]thieno[3,2-b]thiophene (DNTT) coplanar OTFT shows a high field-effect mobility of 6.08 cm2 V–1 s–1 and a low contact resistance of 2.32 kΩ cm, comparable to the staggered OTFTs fabricated simultaneously. Our work addresses the crucial impediments for further reducing the contact resistance in coplanar OTFTs, which represents a significant step of contact injection engineering in organic devices.

Fig: Coplanar Organic Transistors (oTFTs)



Jun 16, 2020

[paper] TFT Compact Modeling

Arun Dev Dhar Dwivedi, Sushil Kumar Jain, Rajeev Dhar Dwivedi and Shubham Dadhich
Numerical Simulation and Compact Modeling 
of Thin Film Transistors for Future Flexible Electronics
Submitted: July 4th 2019Reviewed: October 28th 2019Published: June 10th 2020
DOI: 10.5772/intechopen.90301

Abstract: In this chapter, we present a finite element method (FEM)-based numerical device simulation of low-voltage DNTT-based organic thin film transistor (OTFT) by considering field-dependent mobility model and double-peak Gaussian density of states model. Device simulation model is able to reproduce output characteristics in linear and saturation region and transfer characteristics below and above threshold region. We also demonstrate an approach for compact modeling and compact model parameter extraction of organic thin film transistors (OTFTs) using universal organic TFT (UOTFT) model by comparing the compact modeling results with the experimental results. Results obtained from technology computer-aided design (TCAD) simulation and compact modeling are compared and contrasted with experimental results. Further we present simulations of voltage transfer characteristic (VTC) plot of polymer P-channel thin film transistor (PTFT)-based inverter to assess the compact model against simple logic circuit simulation using SmartSpice and Gateway.
Fig.: Schematic cross-sectional diagram of organic TFTs 
along with the chemical structure of SAM and organic semiconductor.

Acknowledgments: The authors are thankful to SERB, DST, Government of India, for the financial support under Early Career Research Award (ECRA) for Project No. ECR/2017/000179.