Showing posts with label actuators. Show all posts
Showing posts with label actuators. Show all posts

Jan 15, 2024

[C4P] MIXDES 2024

The MIXDES conference series started in Dębe near Warsaw in 1994 and has been organized yearly in the most interesting Polish cities. In 2024 we would like to continue the tradition of inviting you to the most attractive places in Poland and the conference will take place in Gdańsk between June 27-29, 2024
In short period of time the conference has become an important event in the Central Europe allowing to discuss the recent research progress in the field of design, modelling, simulation, testing and manufacturing in various areas such as micro- and nanoelectronics, semiconductors, sensors, actuators and power devices as well as their interdisciplinary applications.

The topics of the MIXDES 2024 Conference include:
  • Design of Integrated Circuits and Microsystems
    Design methodologies. Digital and analog synthesis. Hardware-software co-design. Reconfigurable hardware. Hardware description languages. Intellectual property-based design. Design reuse.
  • Thermal Issues in Microelectronics
    Thermal and electro-thermal modelling, simulation methods and tools. Thermal mapping. Thermal protection circuits. 
  • Analysis and Modelling of ICs and Microsystems
    Simulation methods and algorithms. Behavioral modelling with VHDL-AMS and other advanced modelling languages. Microsystems modelling. Model reduction. Parameter identification.
  • Microelectronics Technology and Packaging
    New microelectronic technologies. Packaging. Sensors and actuators.
  • Testing and Reliability
    Design for testability and manufacturability. Measurement instruments and techniques. 
  • Power Electronics
    Design, manufacturing, and simulation of power semiconductor devices. Hybrid and monolithic Smart Power circuits. Power integration.
  • Signal Processing
    Digital and analogue filters, telecommunication circuits. Neural networks. Artificial intelligence. Fuzzy logic. Low voltage and low power solutions.
  • Embedded Systems
    Design, verification and applications.
  • Medical Applications
    Medical and biotechnology applications. Biometrics. Thermography in medicine
Call for Papers and Contributions
A call is made for papers, contributions and other conference activities on the topics mentioned above. Full papers should be submitted till March 1, 2024 - only in electronic form (MS Word, RTF, Open Office Writer, LaTeX, together with a generated PDF file).

The paper submission form and required format is available on our Web page. Authors are asked to indicate the topic into which their papers fall. The papers will be reviewed by at least two referees from the International Programme Committee. The papers will be published in the proceedings from the author's electronic submission.

Tutorials and Special Sessions - Call for Proposals
Several tutorials/special sessions will be held prior to the conference. Authors willing to propose a tutorial at MIXDES 2024 are invited to send a proposal to the Organizing Committee. The proposal should consist of a three-page summary including tutorial title, name and affiliation of the lecturer(s), tutorial objectives and audience, topical outline and provisional schedule of the tutorial.

Jan 15, 2021

[paper] MEMS thermal actuators

Longchang Ni, Ryan M. Pocratsky and Maarten P. de Boer 
Demonstration of tantalum as a structural material for MEMS thermal actuators 
Microsyst Nanoeng 7, 6 (2021) 
DOI: 10.1038/s41378-020-00232-z 

CMU Mechanical Engineering Dept., Pittsburgh, PA, USA


Abstract: This work demonstrates the processing, modeling, and characterization of nanocrystalline refractory metal tantalum (Ta) as a new structural material for microelectromechanical system (MEMS) thermal actuators (TAs). Nanocrystalline Ta films have a coefficient of thermal expansion (CTE) and Young’s modulus comparable to bulk Ta but an approximately ten times greater yield strength. The mechanical properties and grain size remain stable after annealing at temperatures as high as 1000 °C. Ta has a high melting temperature (Tm = 3017 °C) and a low resistivity (ρ = 20 µΩ cm). Compared to TAs made from the dominant MEMS material, polycrystalline silicon (polysilicon, Tm = 1414 °C, ρ = 2000 µΩ cm), Ta TAs theoretically require less than half the power input for the same force and displacement, and their temperature change is half that of polysilicon. Ta TAs operate at a voltage 16 times lower than that of other TAs, making them compatible with complementary metal oxide semiconductors (CMOS). We select α-phase Ta and etch 2.5-μm-thick sputter-deposited films with a 1 μm width while maintaining a vertical sidewall profile to ensure in-plane movement of TA legs. This is 25 times thicker than the thickest reactive-ion-etched α-Ta reported in the technical literature. Residual stress sensitivities to sputter parameters and to hydrogen incorporation are investigated and controlled. Subsequently, a V-shaped TA is fabricated and tested in air. Both conventional actuation by Joule heating and passive self-actuation are as predicted by models.

Fig: Top view of freestanding Ta thermal actuator. In-plane deflection δ ≈ 5µm after hydrogen degas step

Acknowledgements: This work was partially supported by the US National Science Foundation (NSF) grant number CMMI-1635332. We also acknowledge the Kavcic-Moura Endowment Fund for the support. We would like to thank the executive manager, Matthew Moneck, and all the staff members of the CMU Eden Hall Foundation Cleanroom for their guidance and advice on equipment usage and process development. We also acknowledge the use of the Materials Characterization Facility at Carnegie Mellon University under grant # MCF-677785

Nov 26, 2020

[book] MEMS Fundamentals

MEMS Fundamentals
with ANSYS simulation of basic sensors and actuators
Michał Szermer, Andrzej Napieralski (Eds.)
ISBN eBook: 978-83-66287-64-8, 9788366287648
Wydawnictwo Politechniki Łódzkiej

MEMS Fundamentals
Intro: The purpose of this book is to help universities and individuals extend their traditional microelectronics education into the MEMS area. It is organized in a set of tutorials primarily aimed at electronic engineering students and practicing engineers. Based on carefully selected examples of sensors and actuators, it introduces the reader to device operating principles, modeling approaches, simulation tools and design methodologies.


Book Contents Preface
Chapter 1. INTRODUCTION
1.1. Program description
1.2. References
Chapter 2. SILICON MEMBRANE
2.1. Introduction
2.2. Modeling
2.2.1. Getting started
2.2.2. Setting system of units
2.2.3. Selecting finite element types
2.2.4. Setting material properties
2.2.5. Defining geometry
2.2.6. Meshing
2.2.7. Selecting analysis type
2.2.8. Applying boundary conditions
2.2.9. Running analysis
2.2.10. Viewing simulation results
2.3. Tasks for students
2.4. References
Chapter 3. THERMAL ACTUATOR
3.1. Introduction
3.2. Modeling
3.2.1. Getting started
3.2.2. Defining geometry
3.2.3. Setting material properties
3.2.4. Setting finite element types
3.2.5. Meshing
3.2.6. Selecting analysis type
3.2.7. Applying boundary conditions
3.2.8. Running analysis
3.2.9. Viewing simulation results
3.3. Automation of MEMS thermal actuator design
3.3.1. Simulation of thermal actuator with varying heater temperature
3.3.2. Viewing and saving simulation results using POST1 postprocessor
3.3.3. Plotting relationships
3.3.4. Tasks for students
3.4. References
Chapter 4. ELECTROTHERMAL ACTUATOR
4.1. Introduction
4.2. Modeling
4.2.1. Getting started
4.2.2. Defining geometry
4.2.3. Setting finite element types
4.2.4. Setting material properties
4.2.5. Meshing
4.2.6. Applying boundary conditions
4.2.6.1. Clamp
4.2.6.2. Temperature
4.2.6.3. Voltage
4.2.7. Selecting analysis type
4.2.8. Running analysis
4.2.9. Viewing simulation results
4.2.9.1. Displacement
4.2.9.2. Voltage
4.2.9.3. Temperature
4.3. Tasks for students
4.4. References
Chapter 5. ACCELEROMETER
5.1. Introduction
5.2. Modeling
5.2.1. Getting started
5.2.2. Defining geometry
5.2.3. Setting finite element types
5.2.4. Setting material properties
5.2.5. Meshing
5.2.6. Applying boundary conditions
5.2.7. Selecting analysis type
5.2.8. Running analysis
5.2.9. Viewing simulation results
5.3. Tasks for students
5.4. References
Chapter 6. SILICON MEMBRANE IN WORKBENCH
6.1. Membranes
6.2. Membrane modeling
6.3. Design and modeling of the membrane
6.3.1. Introduction to ANSYS
6.3.2. Getting started
6.3.3. Defining geometry
6.3.4. Setting up the simulation
6.3.5. Results processing
6.4. Exercises for Students
6.4.1. Laboratory tasks
6.4.2. Individual tasks
6.5. References
Chapter 7. MICROBOLOMETER IN WORKBENCH
7.1. Microbolometer principle
7.2. Microbolometer design with ANSYS Workbench
7.2.1. Getting started
7.2.2. Defining geometry
7.2.3. Adding materials’ data to the project
7.2.4. Electrical simulation
7.2.5. Thermal simulation
7.2.6. Exercises for students
7.2.7. Transient thermal simulation
7.2.8. Exercises for students
7.3. References

Aug 14, 2017

[paper] Compact Electro-Mechanical-Fluidic Model for Actuated Fluid Flow System

Compact Electro-Mechanical-Fluidic Model for Actuated Fluid Flow System
T. K. Maiti, Member, IEEE, L. Chen, H. Zenitani, H. Miyamoto, Member, IEEE,
M. Miura-Mattausch, Fellow, IEEE, and H. J. Mattausch, Senior Member, IEEE
in IEEE Journal on Multiscale and Multiphysics Computational Techniques, 
vol. 2, no. , pp. 124-133, 2017.
doi: 10.1109/JMMCT.2017.2731878

Abstract: This paper presents a compact electro-mechanical-fluidic system-modeling method for multidomain system simulation based on multidomain physics that considers the total energy conservation condition, in terms of respective potential and flow quantities. Models for electrical, mechanical, and fluidic domains are developed to design the example of a blood pumping system, where the blood flow is driven by electrically controlled organic actuators. The electrical domain includes an organic mosfet-based control circuit, the mechanical domain includes organic actuators, and the fluidic domain includes a flexible fluid-flow channel. Control circuit, actuators, and fluid models are coupled through equivalent circuits, where interconnection relationships between two neighboring domains are expressed using the energy conservation concept. The model accuracy is verified with finite element method (FEM) based numerical simulation. Significantly faster simulation speed than with FEM and good accuracy were achieved [read more...]

TABLE: CORRESPONDING FORCE AND FLOW EQUATIONS FOR ELECTRICAL AND
MECHANICAL DOMAINS ARE SUMMARIZED [21]-[23]


[21] S. D. Senturia, Microsystems Design. Norwell, MA: Kluwer Academic Publisher, 2001.
[22] T. K. Maiti, L. Chen, H. Miyamoto, M. Miura-Mattausch, and H. J. Mattausch, “Modeling of electrostatically actuated fluid flow system for mixed-domain simulation,” in 20th Int. Conf. on Simulation of Semiconductor Processes and Devices (SISPAD), pp. 190-193, Sept. 2015, USA.
[23] T. K. Maiti, L. Chen, H. Miyamoto, M. Miura-Mattausch, and H. J. Mattausch, “Mixed domain compact modeling framework for fluid flow driven by electrostatic organic actuators,” in 45th European Solid-State Device Research Conference (ESSDERC), pp. 52-55, Sept. 2015, Austria.