Scaled GaN-HEMT Large-Signal Model Based on EM Simulation
Wooseok Lee1, Hyunuk Kang1, Seokgyu Choi2, Sangmin Lee2, Hosang Kwon3, Keum cheol Hwang1, Kang-Yoon Lee1 and Youngoo Yang1
Electronics 2020, 9(4), 632
DOI: 10.3390/electronics9040632
1Department of Electrical and Computer Engineering, Sungkyunkwan University, Suwon 16419, Korea2Wavice Inc., Hwaseong-si 18449, Korea
3Agency for Defense Development, Daejeon 34186, Korea
Abstract This paper presents a scaled GaN-HEMT large-signal model based on EM simulation. A large-signal model of the 10-finger GaN-HEMT consists of a large-signal model of the two-finger GaN-HEMT and an equivalent circuit of the interconnection circuit. The equivalent circuit of the interconnection circuit was extracted according to the EM simulation results. The large-signal model for the two-finger device is based on the conventional Angelov channel current model. The large-signal model for the 10-finger device was verified through load-pull measurement. The 10-finger GaN-HEMT produced an output power of about 20 W for both simulation and load-pull measurements.
Fig: Two-finger GaN-HEMT: a) layout; b) equivalent SPICE subcircuit
Acknowledgement: The research reported in this work has been supported by ADD (Agency of Defense Development) of Korea under an R&D program (UC170025FD).
No comments:
Post a Comment